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� We establish a phonon gas model for
thermal conduction in nanosystems.

� We obtain a linear size dependent
phonon gas viscosity in Si nanosys-
tems.

� We obtain an explicit expression
for thermal conductivity of Si nano-
systems.
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a b s t r a c t

The silicon nanosystems have shown a great potential for high efficient energy conversion devices due to
the strong size effect on thermal conductivity. An accurate and convenient prediction model for such size
effect is highly desired. In this paper a macroscopic heat conduction model for nano-systems is presented
based on the phonon gas dynamics, in which heat conduction is regarded as phonon gas flow in a porous
medium. The resistant term in the momentum equation of the phonon gas flow consists of two parts.
One is the Darcy's term, representing the volume resistance and another is the Brinkman term,
representing the surface resistance. The latter is usually negligible compared with the former for the
medium at the normal scale, while the relative importance of the Brinkman term increases and
consequently, the thermal conductivity decreases with size reduction. The effective phonon gas viscosity
is extracted from the experiments and found to be proportional to the system size in nanoscale based on
the rarefied gas dynamics. In this way an explicit expression for the size dependent thermal conductivity
of silicon nanosystems is obtained, which agrees well with the experimental results for both nano-wires
and films.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The effective thermal conductivity (κeff) of nanosystems is
shown to depend on their characteristic sizes [1–21]. The κeff can
be much decreased in nanosystems, such as nanofilms and
nanowires of semiconductors. The size effect of κeff reveals a great
potential of nano-engineered devices in the field of high efficient

energy transport and conversion, which stimulates much research
in the past decade. In particular, the doped and etched rough
boundary silicon nanowires have been observed to have a high
figure of merit (ZT) [2–3]. Such merit is mainly attributed to
the extremely low thermal conductivity of the nanowires in
experiments (1–10% percent of the bulk value). A large number
of theories have been developed to explain the experimental
observations and model the size dependent behavior of κeff in
nanoscale. The Boltzmann transport equation (BTE) [9–10], mole-
cular dynamics simulation (MD) [9–17], and Monte Carlo simulation
(MC) [17–21] have obtained similar results to the experiments.
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Models with minimal fitting parameters and simple calculation
are also proposed to fast evaluate the thermal conductivity of
nanosystems [22–32], without integral details over frequency
spaces or atomistic calculations. These methods are reasonable
for nanosystems thicker than 20 nm, where the phonon density
function has no significant difference from the bulk materials [9].
The gray model [22–23] estimates the nanoscale thermal con-
ductivity with the mode-independent phonon velocity and relaxa-
tion time, and uses the Matthiessen rule for mean free paths
(MFPs) reduced by the diffuse boundary scattering. Alvarez and
Jou [24] derive an explicit expression of the thermal conductivity
of nanofilms depending on the Knudsen number, by assuming the
characteristic heat wave length equals the nanofilm thickness.
McGaughey et al. [25] propose a new model with the Debye
approximation for the phonon dispersion, the Matthiessen rule for
MFPs, as well as the directional dependent group velocity and
relaxation time. A similar assumption was also used to investigate
the thermal conductivities of core-shell nanostructures by Lü [26].

There are different views on the magnitude of effective phonon
MFPs in these models. Based on the traditional Debye model, the
effective phonon MFP of Si at room temperature is around 40–
43 nm, which is used in Alvarez and Jou's model [24]. Gang and
Yang [33,34] proposed that the optical phonon contributes little to
the thermal conduction, while the average phonon group velocity
should be modified according to the dispersion relation. Therefore,
the MFP of Si is around 260 nm, with which the gray model
approximately agrees with the nanofilm experiments. Yang and
co-workers [15] estimated that the MFP of Si is about 60 nm based
on the phonon relaxation time calculation. Dames and Chen [35]
obtained the MFP of Si as 210 nm based on a sine-dispersion
approximation, which is recently adopted by Ma [32] in his
phonon hydrodynamic model. However, while most of the above
models predict well the κeff of nanofilms compared with experi-
ments, they generally overestimate the κeff of nanowires.

The phonon hydrodynamics (PH) model [27–32] based on the
solution of the phonon Boltzmann transport equation accounts for
the boundary scattering through a continuum mechanics view-
point. The PH model has a Laplacian term of the heat flux, ∇2q, like
the viscous stress term in fluid mechanics. Therefore, the phonon
gas is supposed to form a Poiseuille flow in nanosystems when the
MFPs are much larger than the system size. The boundary drag is
transmitted from the boundary to the inside through the phonon
gas viscosity. Solutions with different boundary conditions, such as
the Maxwell boundary [29,30], backscattering boundary [31] and
MFP-proportional slip boundary [32], have been proposed and
model the size dependent κeff. However, the comparison of PH
models with experiments at present is mainly qualitative. Similar
macroscopic model is presented by the thermomass model [36–
43], which regards the phonon gas as a real weighable fluid and
establishes a general heat conduction model by means of gas
dynamics. The thermomass model elucidates that phonon gas flow
in the normal scale media is like the Darcy flow in porous media,
while the boundary effects are negligible. When the system size
shrinks to nanoscale, the Laplacian term of heat flux appears in the
transport equation as a Brinkman extension, leading to a similar
heat conduction equation to the PH model. This paper aims to
investigate the nanoscale heat conduction from the viewpoint of
phonon gas dynamics. Analysis of rarefied phonon gas dynamics
leads to a simple quantitative expression for predicting the size
dependent κeff.

2. The Poiseuille flow model based on phonon hydrodynamics

The idea that phonons act like gases can be traced back to
1920 s, proposed by Debye et al. They predicted the thermal

conductivity in terms of MFP, just like in kinetic theory of gases
[44–45]

κ ¼ 1
3
ρCVvslR ð1Þ

where κ is the thermal conductivity, ρ is the density, CV is the
specific heat at constant volume, vs is the phonon group speed,
and lR is the MFP, i.e. average distance traveled by phonons
between momentum non-conserving collisions, such as Umklapp
scattering or defects scattering. For room temperature Si, the
usually adopted value of lR is 42 nm with the properties as shown
in Table 1.

Guyer and Krumhansl [27–28] solved the phonon Boltzmann
equation by a linear assumption and obtained a transport model
(GK model) containing the transient and nonlocal terms

∂q
∂t

þ 1
3
v2s∇E¼ � q

τR
þ τNv2s

5
∇2þζ∇∇
� �

q ð2Þ

where q is the heat flux, vs is the average speed of phonons, E is
the internal energy density, τR and τN are the relaxation time for
resistive scattering (R process) and normal scattering (N process),
respectively. ζ is a numerical factor, whose value is 2 [27] or 1/3
[47], due to different integral ways. The GK model is similar to the
Navier–Stokes (NS) equation because of the second order deriva-
tive term of heat flux. In particular, the quantity u¼3q/ρCVT is
called the fluid velocity of phonon gas. For steady heat conduction
in straight wires or films, the GK model can be simplified as

κ∇T ¼ �qþ lRlN
5

∇2q ð3Þ

where lR¼vsτR and lN¼vsτN are the MFPs of the resistive scattering
and normal scattering, respectively. The thermal conductivity κ is
the same as in Eq. (1). The nonlocal term, ∇2q, suggests that the
heat flux in a wire or film is non-uniform in each cross section. If
∇2q is negligible, Eq. (3) reduces to the normal Fourier's law. If ∇2q
dominates, Eq. (3) has a form like NS equation and predicts a
parabolic heat flux profile like the Poiseuille flow. The question is
in which condition the nonlocal term should be taken into
account. A characteristic length can be defined as

lG ¼
ffiffiffiffiffiffiffiffi
lRlN
5

r
ð4Þ

and its ratio over the characteristic size of the nanosystem is
measured by a Knudsen number, KnG¼ lG/L, where L is the
thickness of films or the diameter of wires. Note that the
characteristic length lG is different from the ordinary mentioned
MFP. The latter is lR in general. The Poiseuille flow of phonon gas
forms when the KnG⪢1, i.e. the term, lG2∇2q, overwhelms q in
Eq. (3). At this time the phonon gas is governed by

κ∇T ¼ l2G∇
2q ð5Þ

Assume a non-slip boundary condition, the effective thermal
conductivity, κeff, can be easily obtained as [29–30]

κeff ¼
1
A
κKnG

�2 ð6Þ

Table 1
Properties used for bulk Si at 300 K.

κ ρ CV vs γG

148 W/(m K) 2330 kg/m3 707 J/(kg K) 6400 (m/s) 1.96

Y. Dong et al. / Physica E 56 (2014) 256–262 257



where A is the numerical parameter depending on the cross
section shape, A¼12 for films, A¼32 for wires. Eq. (6) implies
that κeff is proportional to L2, which deviates from the experi-
mental results. To mend this, Jou et al. proposed a Maxwell slip
boundary condition instead of the non-slip boundary condition
[29–30] for nanosystems with strong size effects. It is assumed
that the slip velocity (heat flux) on the walls is proportional to the
MFP times the velocity gradient on the surface,

qw ¼ �ClR
∂q
∂r

jw ð7Þ

where C is the slip parameter related to the properties of the walls.
Therefore, if KnG⪢1, the κeff shows a linear dependence on the
system size,

κef f pκKnG
�1 ¼ κL=lG ð8Þ

which qualitatively agrees with experiments.
It is concluded from Eq. (3) that the reduction due to boundary

drag is worth considering only when lG is comparable with or
larger than the system size, L. To ensure the validity of Eq. (3),
which is a macroscopic continuum equation like the NS equation,
the momentum exchange by normal collision should be more
frequent than that by the resistive one. Therefore, there exists a
window for the Poiseuille flow of phonon gas [28],

lN⪡L; lG⪢L ð9Þ
This condition is hardly satisfied according the temperature
dependent feature of MFPs. Moreover, there are few reference
values for lN, limiting the applicability of Eq. (3) to predict the κeff
in real experiments. The experiment in Poiseuille flow region
should be a good way to measure lN, however, no convincing result
has been achieved. In previous discussion on nanosystem heat
conduction, the role of lN has not received much attention. Models
based on the GK model usually adopt lR instead of lG in Eq. (3).

3. The Darcy–Brinkman model based on the phonon gas
dynamics

The thermomass theory [36–43] treats the phonon gas as a
weighable fluid based on the mass energy equivalence. The mass
density of phonon gas is ρh¼ρCVT/c2, with c the vacuum light
speed. The drift velocity of phonon gas is defined as uh¼q/ρCVT,
which is similar to the definition of “fluid velocity” in Ref. [27]. The
transport equation of the phonon gas is established as a fluid flow
in the porous media

ρh
∂uh

∂t
þ ρhuh∇
� �

uhþ∇ph ¼ fh ð10Þ

where ph is the phonon gas pressure

ph ¼ γGρhCVT ¼ γGρ CVTð Þ2
c2

ð11Þ

with γG the Grüneisen parameter. The first and second terms on
the left hand side of Eq. (10) is the inertia (acceleration) terms, the
third term is the driving term and fh is the friction term.
The previous version of thermomass theory assumed that fh is
proportional to the drift velocity of phonon gas and in a reverse
direction, which is the same as the Darcy's law, i.e. fhp�uh. This
assumption permits Eq. (10) to reduce to the Fourier's law when
the inertia terms are negligible. In this sense, the heat conduction
is similar to the porous flow, and the Fourier's law corresponds to
the Darcy's law.

However, the Darcy's law is only a coarse description for the
porous flow in large scale material. For a general constitutive
equation of porous flow, the effects of acceleration, nonlinear drag
and advection should be included [48–51]. The Brinkman's

equation is a well-known generalization to the Darcy's law,

f ¼ � μ
K
umþμ∇2um ð12Þ

where f is the total resistance, um is the velocity of fluids, μ is the
viscosity of the fluid, and K is the permeability. The first term in
Eq. (12) leads to the Darcy flow, so we call it the Darcy friction
term. The second term in Eq. (12) is introduced from the normal
fluid flow, and is called the Brinkman term. The Brinkman term
describes the advection effect. The characteristic length, lB¼K1/2,
reflects the attenuation length of boundary effect [51]. Therefore,
the dimensionless Brinkman number, Br¼ lB/L, weighs the impor-
tance of viscous friction compared with the Darcy friction. If Br⪡1,
the boundary effect region is much smaller that the channel width,
then the velocity profile is nearly uniform at the cross section,
which agrees with the prediction of Darcy's law. Conversely, if
Br⪢1, the flow is mainly impeded by the boundary drag, thus the
velocity profile approaches to the Poiseuille flow.

In analogy with Eq. (12), the friction term in Eq. (9) is rewritten
as

fh ¼ �βρhuhþμh∇
2uh ð13Þ

where β is the friction parameter, μh is the viscosity of phonon gas.
The characteristic length turns to

lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μh=βρh

q
ð14Þ

When the system size is large, the Brinkman term in Eq. (13) is
negligible. The inertia term is also negligible if we consider the
steady flow in straight systems. In this condition Eq. (10) reduces
to the Fourier's law and the relation between the thermal
conductivity and the friction factor yields,

β¼ 2γGρC
2
VT=κ ð15Þ

The previous work [36–43] indicates that the relaxation time for R
process is

τR ¼
κ

2γGρC
2
VT

ð16Þ

Therefore, Eq. (15) can be further simplified as β¼1/τR. For steady
conduction in straight nanosystems, we obtain the constitutive
equation for heat conduction in small systems by inserting
Eqs. (13–16) into Eq. (10) and dropping the inertia terms,

�κ∇T ¼ q� μhτR
ρh

∇2q¼ q� l2B∇
2q ð17Þ

It is obvious that if we set lB¼ lG, Eq. (17) is the same as Eq. (3).
The difference between them is that Eq. (3) is derived from the
linear Boltzmann equation while Eq. (17) is from the governing
equation of phonon gas flow in porous media. Therefore, they can
be regarded as the microscopic and macroscopic interpretation of
the same governing equation, respectively. Analysis based on the
phonon Boltzmann derivation also shows that the Brinkman term
rises microscopically from the Chapman–Enskog expansion to the
distribution function [39], which is exactly the same as micro-
scopic foundation of the viscous stress term in NS equation.
Similarly, recent work [46] also indicates that a hydrodynamic
description is possible for localized electromagnetic waves in
complex open systems.

The analytical solution to Eq. (17) describing the Darcy–Brink-
man (DB) flow of phonon gas is obtained by previous work
[28–31]. The geometries considered are nanofilms (NFs) and
nanowires (NWs), as shown in Fig. 1. The heat flow is in the x
direction. If lB is constant, and the heat flux vanishes on
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boundaries, the heat flux profile in a NF is

q rð Þ ¼ �κ∇T 1� cosh r=lB
� �

cosh L=2lB
� �

" #
ð18Þ

where rA[0,L/2] is the distance from the central line. This solution
agrees with the model in Ref. [52] which indicated an attenuation
of ballistic distribution function from the boundary. Then κeff is
defined by the integral

κnfef f ¼
R
Lq dy
�∇TL

¼ κ0 1�2Br tanhð1=2BrÞ� � ð19Þ

For NW the heat flux profile is

q rð Þ ¼ �κ∇T 1� J0 ir=lB
� �

J0 iR=lB
� �

" #
ð20Þ

where R is the radium of wire and J is the cylinder Bessel function
as

Jn xð Þ ¼ x
2

� �n
∑
1

t ¼ 0

�1ð Þt x=2
� �2t

t! tþnð Þ! ð21Þ

Thus the κeff is

κnwef f ¼ κ 1� 4Brð Þ J1 i=2Br
� �

iJ0 i=2Br
� �

" #
¼ κ 1�

∑
1

t ¼ 0

4Brð Þ � 2t

t! tþ1ð Þ!

∑
1

t ¼ 0

4Brð Þ � 2t

t!t!

2
664

3
775 ð22Þ

In Fig. 2 the illustrative solutions of the NS model, Eq. (5), and
DB model, Eq. (17), are presented for NFs. For comparison we
assume lG¼ lB, thus KnG¼Br. At small Br the NS model predicts a
huge flow rate, with the maximum q much larger than q0. For the
DB model, the viscous layer is constrained in the near boundary
region, with the central flow region having a uniform heat flux q0.
As Br grows, the profile of the NS model is asymptotic to the DB
model. The difference of the predicted κeff between the NS model
and DB model is 9.1% at Br¼1, and 0.6% at Br¼4. It implies that
neglecting the Darcy friction term could cause considerable error
at intermediate size.

4. Rarefied phonon gas dynamics and κeff of nanosystems

In the porous flow of ordinary fluid, lB is generally much larger
than the MFP of fluid. So the magnitude of Br does not affect the
applicability of the macroscopic continuum equation. The solution
of Eq. (12) with a constant viscosity is accurate enough. However,
for phonon gas flow in nanosystems, lB is probably in the same
magnitude of lR and lN. Therefore, the rarefaction effect should be
simultaneously considered for the latter.

The behavior of gas flow at high Knudsen number has received
much investigation [53–59]. Microscopic methods including
solving the Boltzmann equation [53,54] and direct simulationFig. 1. Geometry of (a) Nanofilm and (b) Nanowire.
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Fig. 2. The velocity profile based on NS model (Circles) and DB model (Lines) at different Brinkman numbers (Br). Here κ is the thermal conductivity of bulk sized Si,
q0¼�κ∇T is the unit heat flux in bulk material.
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Monte Carlo [55,56] agree with the experimental observation [57]
that the effective viscosity of fluid will reduce from the bulk at
high Kn, as well as the non-slip boundary yields to the slip
boundary. Macroscopic continuum models have also been pro-
posed to facilitate the multi-scale numerical work, which is able to
capture the main feature of the flow while avoid much calculation
cost. Such model should include the effects of effective viscosity
reduction (EVR) or boundary velocity slip (BVS). The EVR effect
refers to the velocity profile deviation from that based on the
constant viscosity, while the BVS effect refers to the non-zero
velocity at boundary. Both effects predict an increase of volume
flow rate compared with the nonslip Poiseuille flow. It is not clear
which one is more convenient to use in the rarefied phonon gas
model, as well as which one is more responsible in physical sense.
Sellitto et al. [30,31] showed that using a slip boundary with a
constant slip parameter, C, the quadratic dependence of κeff is
reduced to a linear dependence on size. Nevertheless, they didn't
discuss the possibility to use an EVR model. Therefore, here we
would like to investigate the rarefaction effect of phonon gas flow
from an EVR viewpoint.

There are some models for the EVR effect in rarefied gas
dynamics. Based on the solution to the linearized Boltzmann
equation for the Couette flow problem, Veijola and Turowski
[58] proposed an expression for the effective viscosity, μeff, as

μef f Knð Þ
μ

¼ 1

1þ2Knþ0:2Kn0:788exp �Kn=10
� � ð23Þ

where μ is the viscosity in bulk limit, λ is the MFP of gas, Kn¼λ/L is
the Knudsen number. Here the viscosity is evaluated by the ratio of
shear stress over velocity gradient, as

μef f ¼ � 〈τxy〉
〈∂u=∂y〉

ð24Þ

where the angle bracket means average. Another model is
proposed by Guo et al. [59] based on the MFP suppression
calculation. For a 2D channel, the local effective viscosity is given as

μef f rð Þ
μ

¼ 1þ 1
2

α�1ð Þe�αþ β�1
� �

e�β�α2Ei αð Þ�β2Ei β
� �h i

ð25Þ

where

α¼ L=2�r
λ

; β¼ L=2þr
λ

; Ei xð Þ ¼
Z 1

1
t�1e� tx dt ð26Þ

The spatial dependent viscosity is then incorporated with the
normal constitutive relation to form the extended Navier–Stokes
constitution (ENSC). The ENSC is reported to be able to characterize
the velocity profile of rarefied gas flow, which implies that the
viscosity decrease actually happens in the Knudsen layer. Based on
ENSC, we obtain the flow rate, Q, under unit pressure drop. There-
fore, the average effective viscosity is evaluated through the flow
rate

μef f Knð Þ ¼ � 1
12

L3W
Q Knð Þ

∂p
∂x

ð27Þ

where W is the unit width. In Fig. 3 the Kn dependence of μeff based
on Veijola's model and Guo's model are plotted. Both models
predicts that when Kn⪢1, μeff is approximately proportional to
Kn�1, in other words, proportional to the characteristic size of
systems. At large Kn the μeff based on Guo's model is twice as that
on Veijola's model. The discrepancy is possibly due to the different
viewpoint of evaluating μeff in each model, i.e. Eqs. (24) and (27).

In both Veijola and Guo's models, the EVR is not meant to
exclude the existence of BVS. Instead, it can be regarded as an
alternative simplified model which inclusively describes rarefac-
tion effects. Thus it is reasonable to use EVR to characterize the
rarefied phonon gas flow. The effective lB is extracted from

Eqs. (19) and (22) with the experimental data [5–8] which present
κeff/κ at each system size. Then the effective phonon gas viscosity
μ(h)eff is expressed as

μ hð Þef f ¼
2γGρ

2C3
VT

2

c2
l2B
κ

ð28Þ

The properties for Si at 300 K are listed in Table 1. The obtained
μ(h)eff is plotted against system size in Fig. 4. It is shown that for
these nanosystems, the μ(h)eff can be well approximated by a linear
relation

μ hð Þef f ¼ εL ð29Þ

where the linear factor ε¼3.83�10�7 Pa s m�1. Inserting Eq. (29)
into Eq. (14) the effective lB in each size yields

lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κc2εL
2γGρ2C3

VT
2

s
¼

ffiffiffiffiffiffiffi
λEL

p
ð30Þ

where λE¼7.53 nm is a coefficient with a unit of length. From the
above analysis we see that λE should depend on the material
properties and temperature. It is a constant for the present system
due to the linear dependence of μ(h)eff on L.

The strong linear dependence on size is in analogy with that
predicted by rarefied gas dynamics such as Veijola's model and
Guo's model. It indicates that the EVR is a convenient way to
model the phonon gas flow in nanosystems.
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Fig. 3. The effective gas viscosity (μeff) vs. Knudsen number (Kn) based on Veijola's
model (Eq.(23)) and Guo's model (Eq. (25)). μ is the gas viscosity in normal size
systems.
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Inserting Eq. (30) into Eqs. (19) and (22), we obtain the explicit
expression for the κeff of Si nanosystems at 300 K, i.e.

κnfef f ¼ κ 1�2

ffiffiffiffiffi
λE
L

r
tanhð1

2

ffiffiffiffiffi
L
λE

s
Þ

" #
ð31aÞ

κnwef f ¼ κ 1�
∑
1

t ¼ 0

L=16λEð Þt
t! tþ1ð Þ!

∑
1

t ¼ 0

L=16λEð Þt
t!t!

2
664

3
775 ð31bÞ

The predicted results are compared with experiments in Fig. 5. It
can be seen that the present model predicts well the κeff of both
nanofilms and nanowires.

The contribution to the temperature drop from the Darcy
friction is

φD ¼
R
Lq dy

�κ∇TL
¼ κef f

κ
ð32Þ

Thus κeff/κ represents the percentage occupied by Darcy friction
in the total friction at different system sizes. In nanosystems it
evidently reduces from unity because the importance of Brink-
man friction increases. However, Fig. 5 shows that even in
20 nm systems the Darcy friction contributes over 10% to the
total temperature drop, while in 100 nm systems the contribu-
tion is near 50%. It infers that the DB flow model is more suitable
than the NS equation for the phonon gas flow in nanosystems,
especially for those with an intermediate thickness of around
100 nm.

Since the present lB is extracted from the experimental results,
we want to know the error in this algorithm. The sensitivity is
defined as

s¼ ∂κef f =κef f
∂lB=lB

				
				 ð33Þ

The analytical expression for the sensitivity can be derived from
Eqs. (19) and (22). Here we just present the numerical results for
the sensitivity of lB, as shown in Fig. 6. The s is high for small
systems, since the Brinkman term is significant. For large
systems, the Darcy term is the main contributor to κeff, so the
variation of lB has less impact on κeff. The s decreases by an order
of magnitude when L varies from 10 nm to 1 μm. Therefore, the
uncertainty is larger for the calculated lB for larger systems.
Also, the s is larger for nanowires than for nanofilms, because
the nanowires have stronger suppression on the MFPs, and

thereby the Brinkman term occupies a larger fraction. It means
that the estimation based on nanowire experiments can be
more accurate.

5. Concluding remarks

The previous theories on the size dependent κeff are mostly
based on the MFP suppression, which is a microscopic view on the
mechanism of the size effect. Although these models obtain
similar results to experimental data, there is some controversy
about the value of MFP, and its dependence on geometry is
unclear. The phonon hydrodynamics model based on the solution
of Boltzmann equation characterizes the heat conduction in high
Kn limit by the Navier–Stokes equation combined with a slip
boundary condition, leading to a linear size dependent behavior of
κeff. The size and geometry dependence is thereby attributed to the
boundary induced viscous effect. However, the size dependent
thermal conductivity predicted by the PH model is compared with
the experimental data only for Si nanowires at low temperature,
and the large fluctuation of slip parameters makes the model
inconvenient to use.

In the present work, we macroscopically derive the consti-
tutive equation for a phonon gas flow in a porous flow based
on phonon gas dynamics. The phonon gas, unlike the phonon
hydrodynamics model, is impeded by two effects: the first is
the bulk friction proportional to its drift velocity, which is the
Darcy term; the second is the viscous friction coming from the
boundary, which is the Brinkman term. The Brinkman term
with respect to the Darcy term is significant only for nanosys-
tems, and the boundary effect is attenuated with a character-
istic length, lB. For different geometries, the boundary
resistance can be explicitly weighed by the solution of the
Darcy–Brinkman flow model.

To model the κeff of nanosystems, a size dependent effective
viscosity is inserted into our Darcy–Brinkman flow model to
characterize the rarefaction effect. We find a linear dependence
on size of μ(h)eff from the experiment results, which agrees
with the behaviors of rarefied gas. With the obtained linear
factor, an explicit expression for κeff of nanosystems is pro-
posed, which is convenient to use and predicts κeff well for
different geometries like films and wires. It shows that even in
sub-100 nm systems the Darcy term still takes a considerable
part of the whole resistance, which is neglected in the phonon
hydrodynamics.
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Fig. 5. The effective thermal conductivity (κeff) of Si nanosystems predicted by the
phonon gas model compared with the experimental data. κ is the thermal
conductivity of bulk sized Si. Circle dots: experimental data for nanofilms [5–7];
Triangle: experimental data for nanowires [8]; Upper Dash Line: Eq. (31a); Lower
dash line: Eq. (31b).
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