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An efficient Monte Carlo (MC) method on the basis of introducing a model of phonon scattering processes
is proposed to simulate the ballistic-diffusive heat conduction in silicon nanofilms. The calculated ther-
mal conductivity of nanofilms agrees with the experimental data, which is indicative of the validity of our
simulations. The boundary temperature jump caused by the effects of phonon ballistic transport is
observed by the MC technique. It is found that the boundary temperature jump increases with the Knud-
sen number (Kn). Theoretical models for predicting the boundary temperature jumps are also derived
from the phonon Boltzmann transport equation. Model 1 is derived based on the acoustically thin
approximation (Kn� 1), whereas model 2 is obtained by the diffusive approximation (Kn� 1). Further-
more, we derive model 3 in the intermediate region by an empirical way i.e. averaging model 1 and
model 2. The theoretical models agree well with the MC simulations in different regions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Silicon (Si) is widely used to produce nanoscale wafers in elec-
tronics. The study on nanoscale heat conduction in silicon nano-
films is especially important. Heat conduction in silicon is
predominant by phonons which are quanta of crystal vibrational
energy [1]. In silicon nanofilms of which characteristic length is
comparable to the phonon mean free path (MFP), some of phonons
can directly fly from one boundary to another without scattering. It
is called ballistic transport, causing heat conduction to deviate
from the classical Fourier’s law, such as the size dependence of
thermal conductivity and the boundary temperature jump [2]. In
the intermediate region, the transport of heat is known as ballis-
tic–diffusive conduction and usually described by the Boltzmann
transport equation (BTE) with the relaxation time approximation
[3].

Great efforts have been devoted to study the ballistic-diffusive
heat conduction in recent years. The size-dependent thermal con-
ductivity has been obtained both in experiments [4] and theoreti-
cal analyses [5–7], which indicates the violation of the classical
Fourier’s law in nanoscale. Besides, the temperature profile in the
ballistic–diffusive regime is also an important point. A temperature
jump occurs at the boundary, which can be observed in the numer-
ical solutions of the BTE [9,10] and the simulations of molecular
dynamics (MD) [11] and Monte Carlo (MC) [13–17]. Jiang et al.
[11] discussed the boundary temperature jumps in the MD simula-
tions and analyzed the phonon edge modes which were regarded
as the reason for the temperature jumps. Alvarez et al. [12]
proposed that a thermal boundary resistance led to the tempera-
ture jump. However, the underlying mechanism of the boundary
temperature jump is ambiguous and the model for predicting the
boundary temperature jump is still lacking.

In the present work, we apply the MC technique to study the
ballistic–diffusive heat conduction in silicon nanofilms at room
temperature (300 K). We find that the effects of the phonon ballis-
tic transport lead to the boundary temperature jump (BTJ) increas-
ing with the Knudsen number. Furthermore, we derive the
theoretical models for predicting the boundary temperature jumps
based on the phonon BTE and compare them with the simulations.
2. Monte Carlo simulation details

The gray media approximation is used in our MC simulations.
The gray media approximation assumes that the phonon proper-
ties are frequency-independent. By averaging the frequency-
dependent phonon properties over the phonon population, the
average phonon properties only depending on temperature can
be calculated. Hence, in our simulations, phonons travel with one
velocity and the scattering rate is approximated by one bulk
average phonon MFP. Here, the bulk average phonon MFP, la, is
calculated via the kinetic theory,
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Nomenclature

f phonon distribution function
f0 equilibrium distribution function
D function of phonon density of states
e phonon intensity per solid angle
la mean free path
kB Boltzmann constant
L thickness of nanofilm
Np number of phonon bundles
CV heat capacity at constant volume
vg average group velocity
s direction vector
x spatial coordinate
V volume
N number of atoms
t time
R Radom number
E hemispherical phonon intensity
T temperature
q heat flux
Kn Knudsen number
W energy per phonon bundle

Greek symbols
s relaxation time
r phonon Stephen Boltzmann constant
�h Dirac constant
HD Debye temperature
h polar angle
u azimuthal angle
X solid angle
e phonon emissivity
k thermal conductivity
xD Debye frequency

Subscripts
bu bulk
0 reference state
s scattering
� emitting into the boundary
+ emitting out from the boundary
hm azimuthal angle in the media
hb azimuthal angle at the boundary
ub polar angle at the boundary
um polar angle in the media
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la ¼
3kbu

CVvg
; ð1Þ

where kbu is the thermal conductivity of the bulk material, CV is the
heat capacity at constant volume and vg is the average group veloc-
ity. As for silicon at room temperature, kbu is 150 W/(m K), CV is
1.63 � 106 J/(m3 K) and vg is 6400 m/s [18]. Thus, the bulk average
MFP is 43.7 nm. Arguments still exist on the value of the MFP of sil-
icon at room temperature [8]. Based on a more detailed dispersion
model and only considering acoustic phonons that carry most of
heat, the MFP of silicon is about 260 nm [18]. However, it should
be pointed out that when the longer MFP based on the dispersion
model is chosen, the corresponding heat capacity and group veloc-
ity should also be changed. Here, the MFP is chosen as 43.7 nm with
its corresponding heat capacity and group velocity. The similar
choice was also taken in Ref. [10], in which the lattice Boltzmann
method for phonon transport in silicon was reported.

The phonon intensity emitting into the media from a black-
body boundary can be written as [2,17],

E ¼ rT4: ð2Þ

Definition of the parameter, r, known as the phonon Stephen Boltz-
mann constant is

r ¼ NkBvgp
H3

D

Z HD
T0

0

y3

expðyÞ � 1
dy; ð3Þ

where N is the number of atoms, HD is the Debye temperature, T0 is
the reference temperature and kB is the Boltzmann constant. More-
over, the phonon intensity emitting from a unit control volume, dV,
in the media can be derived by the sort of mathematics used in the
theory of participating media radiation [19]. The phonon intensity
emitting from a unity volume in the media is written as

dQem ¼ 4erT4dV ; ð4Þ

in which e is the phonon emissivity (e = l�1
a ). In a unit control vol-

ume, it is in equilibrium when the phonons received from the
boundaries and all the other unit control volumes are equal to those
emitting from this unit control volume. Based on the local thermal
equilibrium assumption, the local temperature can be calculated.

The intensity of each phonon bundle emitting from the bound-
ary is defined as

W ¼ E
Np

; ð5Þ

where Np is the number of phonon bundles that we trace. Np must
be large enough to preserve the simulation accuracy. The traveling
direction vector of the phonon bundle is given by

s ¼ ½sinðhÞ cosðuÞ; sinðhÞ sinðuÞ; cosðhÞ�: ð6Þ

When the phonon bundle emits form the boundary, sin(h) = (Rhb)1/2,
u = 2pRub (Rhb and Rub are independent random numbers ranging
from 0 to 1). When the phonon bundle travels in the media,
cos(h) = 1 � 2Rhm, u = 2pRum (Rhm and Rum are independent random
numbers ranging from 0 to 1). The detailed derivation of the rela-
tions between the angles and independent random numbers can
refer to Ref. [19].

During the transport process, phonons engage in various scat-
tering events, which can be classified as phonon-interface scatter-
ing and intrinsic scattering. In our simulations, the boundaries are
considered as black-body, so the phonons will be completely
absorbed. A gray boundary with phonon absorptivity less than
1.0 will reflect phonons and make the reflected phonons travel in
the opposite direction. Our simulations ignore this effect due to
the black-body boundary assumption. The intrinsic scattering pro-
cesses, such as phonon-impurities and phonon–phonon scattering,
can be treated in the relaxation-time approximation [16]. Based on
the relaxation time approximation, the traveling distance, Dl, can
be calculated as [17]

Dl ¼ �LKn lnð1� RsÞ; ð7Þ

where L is the characteristic length, Kn is the Knudsen number and
0 < Rs < 1 is a random number.

The block diagram of our tracing algorithm is shown in Fig. 1. It
shall be noted that our tracing algorithm is the one-bundle MC
which is quite different from Refs. [14–16,23], where the tracing
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Fig. 1. Block diagram of our tracing algorithm.
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Fig. 2. Dimensionless temperature profiles of Si nanofilms.
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algorithm is known as the ensemble MC [20]. In our tracing pro-
cess, one phonon bundle is injected and its motion is traced in
the domain, until it exits through the boundaries. Another phonon
bundle is then injected and the process is repeated to simulate an
ensemble of trajectories. As for the ensemble MC, instead of single
phonon bundle, a large ensemble of phonon bundles is simulated
at the same time. Comparing the two algorithms, the first has less
computational expense and is simpler for simulating transient
problems.

The simulation object is a monocrystalline silicon nanofilm with
the thickness L. The physical properties of monocrystalline silicon
at 300 K are shown in Table 1. In our simulations, the Knudsen
number of the nanofilms ranges from 0.05 to 50. The two bound-
aries are maintained at temperatures of T1 (305 K) and T2

(295 K). The boundary temperature jump is defined as T1 � T(0),
in which T1 is the temperature of hot boundary and T(0) is the
average temperature of first cell of the discretization close to the
hot boundary. The tracing number of phonon bundles is equal to
108.The thickness of unit control volume is Dx = 0.1L.
3. Results and discussion

The thickness-dependent thermal conductivity of Si nanofilms
is calculated by the MC technique [17]. The MC simulations agree
well with the experimental data, indicating that our simulations
are properly handled. The dimensionless temperature profiles in
Si nanofilms are shown in Fig. 2. The temperature profiles within
the nanofilms are linear. As Kn = 0, the phonon transport is purely
diffusive and the corresponding temperature profile can be calcu-
lated by the classical Fourier’s law. With the increasement of the
Knudsen number, phonon ballistic transport becomes stronger.
The temperature jumps occur at the boundaries and the tempera-
ture gradient becomes smaller. As Kn ?1, since the phonon bal-
listic transport is dominant, the temperature gradient vanishes
and the boundary temperature jump reaches the maximum value.
Due to no phonon scattering in the nanofilm, the heat flux is
Table 1
Physical properties of monocrystalline silicon at room temperature [21].

Specific heat Thermal conductivity Density

696 J/(kg K) 150 W/(m K) 2330 kg/m3
qballistic ¼ rðT4
1 � T4

2Þ and the temperature within the nanofilm is

calculated as Tballistic ¼ T4
1 þ T4

2

� �
=2

h i1=4
. This is commonly known

as the Casimir limit [6]. When the Knudsen number is equal to
50, almost no scattering events can occur in the nanofilm, and
the temperature profile is very close to the Casimir limit. It is also
found that the boundary temperature jump caused by the effects of
ballistic transport increases with the Knudsen number. The models
predicting the boundary temperature jumps can be derived based
on the phonon BTE. The phonon BTE with the relaxation time
approximation can be expressed as [2]

cosðhÞvg
df
dx
¼ f0 � f

s
: ð8Þ

The phonon intensity per unit area and per solid angle is defined as
[6]

e ¼
Z xD

0
vgðhÞ�hxDðxÞfdx; ð9Þ

where D(x) is the Debye phonon density of states and xD is the
Debye frequency [1]. The heat flux can be calculated as

q ¼
Z

e cosðhÞdX: ð10Þ

Eq. (8) can be rewritten as

cosðhÞ de
dx
¼ � e

svg
þ 1

svg

Z xD

0
dxvgðhÞ�hxDðxÞf0: ð11Þ

According to Eqs. (2) and (3), we have [17]Z xD

0
dxvgðhÞ�hxDðxÞf0 ¼

rT4

p
: ð12Þ

Substituting Kn = vg s/L = la/L, we can obtain the phonon intensity
transport equation

cosðhÞL de
dx
¼ � e

Kn
þ 1

Kn
rT4

p
: ð13Þ
Average group velocity Debye temperature MFP

6400 m/s 645 K 43.7 nm
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Fig. 3. Boundary temperature jumps vs. Knudsen number.
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According to the sort of mathematics used in solving the radiation
transport equation in the participating media between two slabs
[22], the temperature at location x = 0 can be expressed as,

T4ð0Þ ¼ 1
2

T4
1 þ T4

2

� Z 1

0
exp � 1

cosðhÞKn

� �
d cosðhÞ þ

Z 1=Kn

0

�
Z 1

0
T4ðxÞ exp � x

cosðhÞL

� �
d cosðhÞ dx

cosðhÞL

� �
ð14Þ

When Kn� 1, the acoustically thin approximation is applied. The
nanofilm is regarded as nearly maintained at one same tempera-
ture, i.e. T(x) = T(0). Expression (14) can be simplified as,

T4ð0Þ ¼ T4
1 þ T4

2BðKnÞ
1þ BðKnÞ ;

BðKnÞ ¼ 1
Kn

Z Kn

0
exp �1

z

� �
dz:

ð15Þ

We can name Eq. (15) as model 1. Whereas, as Kn� 1, the diffusive
approximation can be used, thus the phonon intensity per unit area
and per solid angle is expanded as the Taylor series of Kn,

e ¼ eð0Þ þ Kneð1Þ þ OðKn2Þ: ð16Þ

Substituting Eq. (16) into the phonon intensity transport equation
(13) yields

eð0Þ ¼ rT4

p
;

cosðhÞL deð0Þ

dx
¼ �eð1Þ:

ð17Þ

Thus,

e ¼ eð0Þ � Kn cosðhÞL deð0Þ

dx
: ð18Þ

The heat flux emitting out from the boundary whose temperature is
maintained at T1 is calculated as q+ = E(T1). The heat flux emitting
into the boundary is calculated as

q� ¼ 2p
Z p

p=2
e cosðhÞd cosðhÞ: ð19Þ

Substituting Eq. (18) into Eq. (19) yields,

q� ¼ rT4ð0Þ þ 2
3

Kn
d rT4ð0Þ
h i

dx
L: ð20Þ

The net heat flux across the nanofilm is expressed as q ¼ qþ � q�.
Thus,

rT4
1 � rT4ð0Þ ¼ 2

3
Kn

d rT4ð0Þ
h i

dx
Lþ q: ð21Þ

Substituting Eq. (18) into Eq. (10), q can be calculated as

q ¼ �4
3

Kn
d rT4ð0Þ
h i

dx
L: ð22Þ

Thus,

rT4
1 � rT4ð0Þ ¼ �2

3
Kn

d rT4ð0Þ
h i

dx
L: ð23Þ

We have,

d rT4
1

� �
dT1

T1 �
d rT4ð0Þ
h i

dT
Tð0Þ ¼ �2

3
Kn

dTð0Þ
dx

d rT4ð0Þ
h i

dT
L: ð24Þ

Since Kn� 1 and dðrT4
1Þ=dT � d½rT4ð0Þ�=dT , Eq. (24) can be simpli-

fied as
T1 � Tð0Þ ¼ �2
3

Kn
dTð0Þ

dx
L: ð25Þ

Eq. (25) is named model 2. In the nanofilm, the heat flux can also be
calculated as [6],

q ¼ 4rT3
0ðT1 � T2Þ
3

4Knþ 1
: ð26Þ

Thus the BTJ can also be expressed as

T1 � Tð0Þ ¼ T1 � T2
3

2Knþ 2
: ð27Þ

The boundary temperature jumps by the MC simulations and
theoretical models are shown in Fig. 3. As Kn > 15, model 1 based
on the acoustically thin approximation is better fitting with the

simulations. When Kn ?1, Tð0Þ ¼ T4
1 þ T4

2

� �
=2

h i1=4
predicted by

model 1 corresponds to the Casimir limit. Whereas, as Kn < 5,
model 2 based on the diffusive approximation is better. As
Kn = 0, the BTJ by model 2 vanishes corresponding to the classical
Fourier’s law. However, as 5 < Kn < 15, neither model 1 nor model 2
can predict the BTJ by the simulations well, since this region is
intermediate, and the assumptions of our models (acoustically thin
approximation and diffusive approximation) are both invalid. It is
found that in this intermediate region the BTJ calculated by the
MC technique is just between model 1 and model 2. So the model
to predict the BTJ in this region can be derived by a completely
empirical way, i.e. averaging model 1 and model 2. Thus the
boundary temperature can be given by,

Tð0Þ ¼ 1
2

T1 �
T1 � T2

3
2Knþ 2

þ T4
1 þ T4

2BðKnÞ
1þ BðKnÞ

" #1
4

8<
:

9=
;: ð28Þ

This empirical averaged model is named as model 3. The values cal-
culated by model 3 are also shown in Fig. 3, which can agree well
with the simulations in the intermediate region.

4. Conclusions

(1) We propose an efficient MC method based on establishing a
model of phonon scattering processes. It is then employed
to simulate the ballistic-diffusive heat conduction in silicon
nanofilms. The calculated size-dependent effective thermal
conductivity agrees well with the experimental data, which
verifies the validity of our MC simulations.
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(2) The MC technique is applied to study the boundary temper-
ature jump caused by the effects of phonon ballistic trans-
port. Our simulations show that the boundary temperature
jump increases with the Knudsen number.

(3) The theoretical models,
Kn > 15 T4ð0Þ ¼ T4
1þT4

2BðKnÞ
1þBðKnÞ ;

5 6 Kn 6 15 Tð0Þ ¼ 0:5 T1 � T1�T2
3

2Knþ2
þ T4

1þT4
2BðKnÞ

1þBðKnÞ

h i1=4
� �

;

Kn < 5 T1 � Tð0Þ ¼ � 2
3 Kn dTð0Þ

dx=L ;
for predicting the boundary temperature jumps in different regions
are derived based on the phonon Boltzmann transport equation,
and agree well with the MC simulations.
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