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Rotational diffusion processes are correlated with nanoparticle visualization and manipulation tech-
niques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systemati-
cal methodology of deriving this diffusivity is still lacking. In the current work, three molecular
dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and
nonequilibrium (Einstein–Smoluchowski relation) methods, are developed to calculate the rotational
diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude
that the three methods produce same results on the basis of plenty of data with variation of the calcu-
lation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the
validity and accuracy of the MD simulations. However, these results have a non-negligible deviation
from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come
from several unrevealed factors of the theory. The three MD methods proposed in this paper can also
be applied to other situations of calculating rotational diffusion coefficient. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4861661]

I. INTRODUCTION

In fluid systems, nanoparticle manipulation and visual-
ization techniques have drawn much attention due to its po-
tential applications in the design of novel hydrodynamic nan-
odevices, e.g., sensors, probes for various areas, especially
biotechnology. When the target object is a non-spherical sin-
gle particle, its movement may involve the coupling between
translational and rotational diffusion, increasing substantial
complications for dynamics analyses.1, 2 While the transla-
tional diffusion has been studied quite extensively, the rota-
tional diffusion draws much less attention. But under various
nonequilibrium conditions, like shear flow,3 electric fields,4

or magnetic fields,5 some rather interesting phenomena, like
the nanoparticle’s orientation and alignment can be observed,
which are related to rotational diffusion and have a great im-
pact on the physical properties of the nanocomposites6 or
nanofluids.7 From the above perspectives, getting a better un-
derstanding on the rotational diffusion of a nanoparticle is an
urgent task.

A theoretical equation was derived by Tirado et al.8, 9 to
calculate the rotational diffusion coefficient Dr of a cylindri-
cal rod-shaped object (CRSO). It has been applied to various
experimental studies a lot recently, serving as a fundamen-
tal tool to analyze the diffusion processes.10–12 However, as
stated in Ref. 13, the slip of the fluid on the solid surface of
the rotating particle may have a non-negligible effect on Dr,
which is not considered in Refs. 8 and 9. Therefore, the valid-
ity of applying the literature theory to the nanoparticles may
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be questioned. To address this issue, the solution points to
the molecular dynamics (MD) calculation. The MD method is
preferred for its simplicity in modeling the atom-atom inter-
actions and directly monitoring the nanoparticle’s Brownian
motion. It has been successfully applied to the calculation of
other transport coefficients, including thermal conductivity,14

shear viscosity,15 and translational diffusion coefficient.16 But
unfortunately, few reports on MD simulation methods of cal-
culating the rotational diffusion coefficient exist, which re-
quires further studies.

Thus, the objective of the present work is to pro-
pose MD methods to systematically calculate the rotational
diffusion coefficient of a nanoparticle in fluid and compare
the results with the theoretical predictions. Three MD meth-
ods include equilibrium molecular dynamics (EMD) based on
Einstein relation, Green-Kubo (GK) formula, and nonequi-
librium molecular dynamics (NEMD) based on the Einstein–
Smoluchowski (ES) relation. The nanoparticle is confined to
rotate two-dimensionally, in order to meet the hot topics of
anisotropic particle diffusion in membranes in bioscience.1, 17

Here, the chosen nanoparticle is a capped carbon nanotube
(CNT). Mathematically, it can be modeled as a CRSO, by
treating it as a rigid particle, which allows direct compari-
son with Refs. 12 and 13. Compared with a flexible one, the
effects of deformation and atom oscillation are not taken into
account for the rigid case. Practically, CNT’s rotational dif-
fusion should attract special focus of attention due to its role
as fluorescent probes in bioimaging,18, 19 or imparting its var-
ious great features to nanocomposites.20, 21 It is not surprising
to find out that the theory may not coincide with the present
cases any more, for the lack of consideration of some basic
factors.

0021-9606/2014/140(3)/034703/5/$30.00 © 2014 AIP Publishing LLC140, 034703-1

http://dx.doi.org/10.1063/1.4861661
http://dx.doi.org/10.1063/1.4861661
http://dx.doi.org/10.1063/1.4861661
mailto: caoby@tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4861661&domain=pdf&date_stamp=2014-01-16


034703-2 B.-Y. Cao and R.-Y. Dong J. Chem. Phys. 140, 034703 (2014)

II. METHODOLOGY

A. EMD based on Einstein relation

In the canonical ensemble, assume an N-nanotubes sys-
tem and the rotational diffusion equation can be written as

∂C

∂t
= Dr�ϕC. (1)

Here, the concentration C depends on the particle’s di-
rectional angle in its own spherical coordinate frame and Dr

is the rotational diffusion coefficient. For the two-dimensional
rotation, assume that at initial time t = 0, all the nanotubes lo-
cate at ϕ = 0, i.e., C(ϕ, 0) = Nδ(ϕ). Then, the solution of
Eq. (1) is

C(ϕ, t) = N

2
√

πDrt
e− ϕ2

4Dr t . (2)

Equation (2) implies that the concentration is actually a
time related Gaussian distribution. And from Eq. (2), the an-
gular mean-squared displacement (MSD) 〈�ϕ2〉 can be ob-
tained,

〈�ϕ2〉 = 1

N

∫ +∞

−∞
ϕ2C(ϕ, t)dϕ = 2Drt. (3)

Here, 〈. . . 〉 denotes ensemble average and �ϕ is the an-
gular displacement expressed as �ϕ(t) = ϕ(t + τ 0) − ϕ(τ 0).
Finally, the Einstein relation describing the rotational diffu-
sion for a single nanotube can be expressed as

Dr = (�ϕ)2

2t
. (4)

For EMD simulations, ... denotes the time average for a
single nanotube. As ergodic hypothesis holds for our simula-
tions, the time average is equivalent to the ensemble average.

B. EMD based on Green-Kubo formula

The Green-Kubo formulas relate equilibrium fluctuations
of the fluxes to the corresponding phenomenological (or On-
sager) coefficients Lij and give the exact mathematical expres-
sion in terms of integrals of time correlation functions:22

Lij = V

3kB

∞∫
0

〈Ji(t) · Jj (t0)〉dt. (5)

Given a microscopic and instantaneous expression for the
fluxes Ji (t), one can compute the Lij, which can be connected
with the transport coefficients within the framework of irre-
versible processes. The equivalence of GK formula to Ein-
stein relation has been proven and for the present case of ro-
tational diffusion coefficient, the GK formula can be directly
deduced,

Dr =
∞∫

0

ω(t) · ω(t0)dt. (6)

Here, ω is the angular velocity of the nanotube. The time
integration of the angular autocorrelation function (AACF)
ω(t) · ω(t0) gives the final results of Dr from Eq. (6).

C. NEMD based on Einstein–Smoluchowski relation

For the two dimensional rotation, suppose some potential
energy U creates a torque 〈	〉 = −dU/d〈ϕ〉 on the nanotubes,
which would respond by rotating with angular velocity 〈ω〉
= μr · 〈	〉. Here, μr denotes mobility. After some time, equi-
librium will be established when there is no net flow and the
nanotubes are located around the direction with the lowest U.
The flow of particles due to drift and diffusion current can be
separately expressed as

Jdrift(ϕ) = μr〈	〉C(ϕ) = −C(ϕ)μr

dU

dK〈ϕ〉 , (7)

Jdiffusion(ϕ) = −Dr

dC

d〈ϕ〉 . (8)

At equilibrium, Boltzmann statistics infer that

C(ϕ) ∝ e−U/(kBT ), (9)

in which kB is the Boltzmann constant and T is the tempera-
ture of the fluid. Equilibrium requires:

Jdrift + Jdiff usion = −C(ϕ)μr

dU

d〈ϕ〉 + Dr

kBT

dU

d〈ϕ〉C(ϕ)

= −C(ϕ)
dU

d〈ϕ〉
(

μr − Dr

kBT

)
= 0.

(10)

Finally, for the single nanotube, the Einstein–
Smoluchowski relation can be expressed as

Dr = μrkBT = (ω̄/	̄)kBT . (11)

In Eq. (11), μr is equal to the proportion of the nanotube’s
angular velocity and external torque. For nonequilibrium sim-
ulations, a constant torque 	 is applied to the nanotube, which
will drive it to go through uniform circular motions at all
times. Then, based on Eq. (11), Dr can be derived.

III. COMPUTATIONAL DETAILS

The calculation of the rotational diffusion coefficient via
molecular dynamics is investigated by taking a carbon nan-
otube in fluid argon as a case. Figure 1 shows the schematic
diagram of the carbon nanotube in fluid for the initial config-
uration. The simulation system is established in the orthog-
onal coordinates labeled as x, y, z, with periodic boundary
conditions applied in all three directions. Fluid argon is se-
lected to simplify the MD simulation procedure. To model
a rodlike molecule, the nanotube is capped at both ends to
prevent argon atoms from entering the nanotube. A MD pack-
age LAMMPS is used to perform the calculations.23 Lennard-
Jones (LJ) pair potential, in the form of Eq. (12), is considered
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FIG. 1. Schematic diagrams of the initial configuration of the simulation sys-
tem established in the orthogonal coordinates x, y, z.

between argon atoms and between argon and carbon atoms,

ϕ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (12)

The basic parameters are listed as follows, σ Ar-Ar

= 0.3405 nm, εAr-Ar = 1.6546 × 10−21 J, σ C-Ar = 0.3573 nm,
εC-Ar = 1.9646 × 10−21 J.24 The C–C interactions are not con-
sidered and instead the nanotube is treated as a rigid body,25

which ensures a larger time unit to be used, to be precise,
10 fs. The EMD simulations based on Green-Kubo formula
and Einstein relation are run for 100 ns, while the total
time for one NEMD case equals 5 ns. To reduce the time-
consuming calculations of the inter-particle interactions, a
cutoff distance of 0.77 nm is imposed. The canonical en-
semble, i.e., NVT ensemble, is used accompanied with the
Nose-Hoover thermostat whose isothermal relaxation time is
selected as 0.1 ps. To calculate the rotational diffusion coeffi-
cient, the nanotube is confined only to rotate on the x-y plane.

For convenience, a sample case should be defined here:
The capped nanotube has the armchair (5, 5) configuration
with a diameter d of 0.688 nm and length L of 6.80 nm. The
density ρ and temperature T of fluid argon are 1763 kg/m3

and 300 K, respectively. The simulation domain has a size of
Lx × Ly × Lz = 10.6 × 10.6 × 10.6 nm3. In the rest of the pa-
per, the factors listed above will be changed in turn resulting
in multiple sets of data of the nanotube’s rotational diffusion
coefficients.

IV. RESULTS AND DISCUSSION

Figure 2 is the time-varying MSDs for the sample case
along with the cases of changing the length L, diameter d,

FIG. 2. Angular MSDs for the sample case and the cases of changing various
factors including length L and diameter d of the nanotube, temperature T, and
density ρ of the fluid argon.

temperature T, and density ρ, respectively. Diffusive behav-
ior can be observed for all the selected cases and the curves
can be fit by linear functions. As can be seen, the change of
a particular factor brings about different slopes of the MSDs.
Dr can be extracted therefrom based on Einstein relation of
Eq. (4) with the uncertainties obtained from the standard er-
ror of the linear fitting. Figure 3 is the time-varying AACF
and the convergence of the calculated rotational diffusion co-
efficient in terms of the AACF (the inset) for the sample case
at equilibrium. The AACF rapidly converges to around zero
from the initial value. The integration of the AACF, which is
Dr according to the Green-Kubo formula of Eq. (6), increases
rapidly at first, and then gradually becomes stable. The uncer-
tainty is calculated by estimating the fluctuation of the plateau
of the integrated curve.

FIG. 3. Time-varying angular autocorrelation function (AACF) for the sam-
ple case. The inset shows the converging rotational diffusion coefficient Dr
found by integrating AACF.
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FIG. 4. (a) Dependence of the rotational diffusion coefficient Dr on the ex-
ternal torque; (b) dependence of the angular velocity on the external torque
along with the linear fitting.

Figure 4(a) exhibits Dr, for the sample case, calculated
from each imposed external torque 	, respectively. From the
statistical error of the Dr fluctuation along with time, the un-
certainty of the results can be acquired. As can be observed,
an almost monotonic decrease of the relative uncertainty ex-
ists with changing 	. And for the first two points, the large er-
ror bars indicate the unreliability of the results at small torque.
However, with the increasing of 	, Dr has a slight increase.
This may come from that the fast rotation disturbs the local
fluid flow around the nanotube, causing the friction coefficient
(inverse of the mobility μr) to decrease at the same time. Thus,
to get more reliable results, the linear response theory should
be utilized. Figure 4(b) shows change of angular velocity ω

along with the imposed external torque 	. The slope of the
curve can be obtained via the linear fitting and by submitting
the slope into Eq. (11), Dr is extracted. For the rest of the sim-
ulations, Dr will be calculated this way and the uncertainties
are also gathered from standard error of the linear fitting.

Multiple groups of data are calculated by the above three
MD methods, along with the uncertainty of each data point,

summarized in Table I. Theoretical values are also included
for comparison, which are calculated from the equation of
Tirado et al.,9

Dr = 3kBT (ln p + δ)

πηL3
, (13)

where p = L/d, δ = −0.662 + 0.917/p − 0.05/p2.
The symbols of Eq. (13) share the same meaning as in

Secs. II and III, along with η denoting the three-dimensional
shear viscosity. First, increasing the length L or diameter d of
the nanotube will both bring about a smaller Dr. Mathemati-
cally, by assuming L > d, at fixed diameter of d = 0.688 nm,
the change of Dr along with the length is strictly monotonic
via differentiating Eq. (13) by L, and the case of changing d at
fixed L = 6.80 nm is the same. Second, increasing tempera-
ture T or decreasing density ρ of the fluid argon results in the
increase of Dr. These two factors will cause viscosity of the
fluid to change at the same time. From Eq. (13), at the fixed
ρ = 1763 kg/m3, viscosity decreases due to the increase of T,
which both lead to a larger Dr. Although density is not explic-
itly involved in Eq. (13), its influence on Dr can be reflected
by the viscosity as well. The maximum relative difference be-
tween the three MD results is within 15%, indicating a good
agreement between the methods and accuracy of the simula-
tions. And qualitatively, the simulation results show the same
trend as the theoretical predictions, as illustrated by the above
analyses. However, compared with Eq. (13), the relative dif-
ferences approximately lie in the range of 45%–65%, which
is a great deviation. This implies that there exist other unre-
vealed factors, such as inertia of the rotating nanotube and
velocity slip,13 affecting the rotational diffusion coefficient.

Accompanying with the above simulation results, three
points are worthy to be discussed. First, the CNT is se-
lected as a representative of various nanorods studied in ex-
periments. The experimental results of nickel nanorods in
colloidal dispersions11 also show that values of Dr are sys-
tematically reduced by a factor of ∼2 as compared to the
Tirado model, in perfect coincidence with our observations.
Although the authors put forward three possible qualitative
reasons to account for the discrepancy, it still suggests that
we must be cautious when using the literature theory in prac-
tical situations. Second, the flexibility of CNT is not consid-
ered in the present simulations. This simplification is quite
reasonable when our aim is to develop simulation methods
to calculate Dr and compare it with the theoretical work of a
rigid rod model. However, we need to note that the flexibility
may affect the results in several ways. For instance, the energy
used for the CNT to rotate may be partly stored as deforma-
tion energy, resulting in the decrease of Dr; the deformation
will also cause the decrease in the apparent length and then
Dr may be increased. This is a non-trivial issue, worthy to be
addressed in the future work. Third, the rotational diffusion
coefficient is related to the rotary mobility by Eq. (11). Then,
the current work can be further used as a guide to control the
orientation of nanoparticles or macromolecules, which would
find potential applications in the design of high mechanical,3

electrical,4 optical,26 or thermal27, 28 performance systems.
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TABLE I. Rotational diffusion coefficients Dr obtained from MD results and from Eq. (13).

L d T ρ η Dr_Eq. (13) Dr_Einstein Dr_GK Dr_ES MRD1 MRD2
(nm) (nm) (K) (kg/m3) (cP) (×107 rad2/s) (×107 rad2/s) (×107 rad2/s) (×107 rad2/s) (%)a (%)b

3.10 0.688 300 1763 0.49 55.20 24.61 ± 0.19 21.01 ± 1.09 23.72 ± 0.97 14.6 62.0
5.61 0.688 300 1763 0.49 12.1 5.10 ± 0.02 4.83 ± 0.19 5.28 ± 0.17 7.7 60.0
6.80 0.688 300 1763 0.49 7.27 2.52 ± 0.01 2.63 ± 0.15 2.94 ± 0.14 13.8 65.7
8.10 0.688 300 1763 0.49 4.59 1.84 ± 0.01 1.61 ± 0.03 1.79 ± 0.12 11.1 64.9

6.80 0.688 300 1763 0.49 7.27 2.52 ± 0.01 2.63 ± 0.15 2.94 ± 0.14 13.8 65.7
6.80 1.10 300 1763 0.49 6.02 2.58 ± 0.02 2.60 ± 0.18 2.59 ± 0.09 1.0 57.1
6.80 1.38 300 1763 0.49 5.46 2.43 ± 0.01 2.49 ± 0.15 2.47 ± 0.13 2.4 54.8
6.80 1.65 300 1763 0.49 5.02 1.91 ± 0.01 1.89 ± 0.15 2.14 ± 0.08 9.5 62.4
6.80 1.93 300 1763 0.49 4.68 1.86 ± 0.01 1.88 ± 0.06 2.09 ± 0.08 9.5 60.3

6.80 0.688 240 1763 0.61 5.38 1.95 ± 0.01 1.73 ± 0.09 2.01 ± 0.07 15.0 67.8
6.80 0.688 300 1763 0.49 7.27 2.52 ± 0.01 2.63 ± 0.15 2.94 ± 0.14 13.8 65.7
6.80 0.688 480 1763 0.34 13.81 7.50 ± 0.03 6.40 ± 0.36 6.76 ± 0.25 14.7 53.6
6.80 0.688 720 1763 0.32 21.92 11.53 ± 0.01 10.42 ± 0.56 11.50 ± 0.32 9.6 52.5

6.80 0.688 300 168 0.026 115.8 61.03 ± 0.05 68.52 ± 4.32 61.69 ± 2.59 10.9 47.0
6.80 0.688 300 504 0.036 81.74 43.14 ± 0.03 42.55 ± 2.13 37.09 ± 1.70 14.2 54.7
6.80 0.688 300 840 0.054 47.26 26.91 ± 0.01 24.35 ± 0.83 23.72 ± 0.33 11.9 49.8
6.80 0.688 300 1344 0.16 18.22 11.18 ± 0.02 10.38 ± 0.54 9.37 ± 0.21 15.3 48.5
6.80 0.688 300 1763 0.49 7.27 2.52 ± 0.01 2.63 ± 0.15 2.94 ± 0.14 13.8 65.7

aMRD1: Max relative difference between the three MD results.
bMRD2: Max relative difference between MD results and predictions of Eq. (13).

V. CONCLUSIONS

Herein, we have successfully put forward three molec-
ular dynamics simulation methods, i.e., two EMD methods,
which are Einstein relation and Green-Kubo formula, one
NEMD method, which is Einstein–Smoluchowski relation,
and utilized them to calculate the rotational diffusion coef-
ficient of a carbon nanotube in fluid. Multiple sets of data
points are obtained by the above three methods and the max-
imum relative difference is well within 15%, which indicates
the accuracy of the simulations. Remarkable deviation exists
between MD results and the theoretical values and the maxi-
mum relative difference locates within 45%–65%. Some un-
revealed factors should account for the inadequacy of the the-
ory applied to practical cases. As characterization of the rota-
tional diffusion of a single particle has become a key step to
analyze many complex nanoparticle-diffusion processes, this
work will provide an opportunity to gain an insight into this
problem through molecular dynamics calculations. Not only
can these methods work well for the present most simplified
situations, but also can it be applied to other more realistic
circumstances.
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