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Heat may transport as waves under ultrafast heat pulse conditions. In this paper, our numerical analyses
considering typical thermal wave modes, i.e. Cattaneo–Vernotte (CV), dual-phase-lagging (DPL), and ther-
momass (TM), disclose that dispersion may occur during the heat propagation processes like water, sound,
and light waves. The unified implicit finite difference method for the Fourier, CV, DPL, and TM models was
adopted to analyze the heat propagation process in solids. The validity of this numerical method for the
Fourier, CV, DPL and TM models was confirmed. The dispersion of thermal waves was observed in their
propagation processes for the first time. As the thermal waves moving forward, many peaks appear in
the rear of the thermal waves relative to the propagation direction. The underlying mechanism for the
dispersion of the thermal waves is that they can travel faster in the points with higher temperature con-
sidering the temperature dependence of the relaxation time. For the CV-waves and DPL-waves, the origins
of the dispersion are both due to the inertia term of heat flux to time sq

@q
@t

� �
. For the TM-waves, the origins

are due to the inertia term of heat flux to time, inertia term of temperature to time, and inertia term of heat
flux to space in the TM model, and effects of the inertia term of temperature to space on the dispersion can
be neglected, where the inertia term to space comes from the nonlocal effects. The dispersion of the
TM-waves is mainly dominated by the inertia term of heat flux to time. In the TM model, the characteristic
time sTM decreases with the increase of temperature, and therefore the dispersion will appear in the prop-
agation process of the TM-wave. For actual materials, if considering that sq decreases with the temperature
increasing, the dispersion of the CV-wave and DPL-wave will also appear under the appropriate amplitude
of heat flux pulse, relaxation times sq and sT. The increase of the amplitude of heat flux pulse and
the decrease of the initial temperature both can enhance the dispersion of the TM-wave. The increase of
the amplitude of heat flux pulse and the relaxation time sq can both enhance the dispersion of the CV-wave
and DPL-wave, while the increase of the relaxation time sT will weaken the dispersion of the DPL-wave.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As water, sound, and light waves of different wavelengths travel
at different phase speeds, dispersion will occur in the wave propa-
gation processes. For heat conduction in solids, it has been widely
interpreted as diffusive, thermal wave [1–5] or ballistic phenom-
ena [6–8]. Considering the thermal wave (second sound wave) in
super fluid helium (He II) under strong heat flux perturbation,
numerical results obtained by the Landau’s two-fluid model indi-
cated that the rear portion of a rectangular thermal wave expands
gradually due to that wave travels faster in regions with higher
temperature [9]. Therefore, when the heat propagation is in a wave
mode, the dispersion may appear in the propagation process under
appropriate initial-boundary conditions if the thermal waves prop-
agate at different speeds. Understanding the dispersion of thermal
waves may greatly benefit the ultrafast laser, high-frequency
circuit, ultralow temperature technologies and so on. However, re-
ports on the thermal wave dispersion remain seldom thus far.

Typical heat conduction models which are most studied and ap-
plied include the Fourier model [10], Cattaneo–Vernotte (CV) mod-
el [11–13], dual-phase-lagging (DPL) model [2,14,15], and
thermomass (TM) model [16–18] are shown in Eqs. (1)–(4),
respectively,
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Nomenclature

A dimensionless amplitude of heat flux
Cv specific heat, J/kg K
d thickness, m
k thermal conductivity, W/m K
q heat flux, W/m2

t time, s
tp heat flux pulse duration, s
Dt time step, s
T temperature, K
T0 initial temperature, K
V thermal wave propagation speed, m/s
x position, m
Dx spatial step, m
Z dimensionless relaxation time

Greek symbols
a thermal diffusivity, k/q�Cv, m2/s
c Grüneisen constant
q density, kg/m3

s relaxation time, s

Superscript
⁄ dimensionless parameter

Subscripts
0 initial temperature
n n-th step
p heat flux pulse
q heat flux
q-t heat flux to time
q-x heat flux to space
T temperature
T-t temperature to time
T-x temperature to space
TM thermomass
TM0 thermomass at initial temperature
v volume
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In Eqs. (1)–(4), q is the heat flux, T is the temperature, t is the time,
and k is the thermal conductivity. Besides, in Eqs. (2) and (3), sq is the
relaxation time of heat flux, which is defined as the ratio of the mean
free path of phonons to their group speed and represents the time
necessary for the initiation of the heat flux after a temperature gra-
dient has been imposed. In Eq. (3), sT is the relaxation time of the
temperature gradient (rT) and represents the time necessary for
the initiation of the temperature gradient established across the so-
lid after the heat flux has been imposed. Both of the two relaxation
times sq and sT are treated as intrinsic thermal or structural proper-
ties of the material. They are interpreted as being caused by the
phonon collisions in a duration of the mean free time and the mi-
cro-structural interactions such as phonon-electron interaction or
phonon scattering [19,20]. In Eq. (4), sTM is the lagging time for the
thermal wave based on the thermomass theory, defined as a/(2cCvT),
where a, i.e., k/(qCv), is the thermal diffusivity and c is the Grüneisen
constant. q and Cv are the mass density and heat capacity at constant
volume of the solid, respectively. So, the initial lagging time sTM0 = a/
(2cCvT0) when T = T0, where T0 is the initial temperature. Except for
the above heat conduction models, there are also many other models
[21], especially when considering the nonlocal effects in a nonequi-
librium steady state [22,23], such as the Guyer–Krumhansl model
[24,25] and the nonlocal model proposed by Tzou and Guo [26].

The Fourier’s law is valid for most engineering situations at the
temporal and spatial macro scales although it assumes that ther-
mal perturbation travels in solids at an unphysical infinite speed,
which is in contradiction with the theory of relativity. But this dif-
fusion model fails in situations such as the high-power under
short durations like pulse-laser heating, micro-scale situations,
cryogenic engineering and biological tissues due to its infinite
heat propagation speed [27–31]. In the CV model, the introduction
of sq leads to the finite CV-wave speed

ffiffiffiffiffiffiffiffiffiffi
a=sq

p
and this overcomes

the limitation of the Fourier model. Therefore, the heat propaga-
tion process evolves from a diffusion to a wave phenomenon.
The CV model can be reduced to the Fourier model when sq is
negligible or when the time variation of heat flux is slow. But
the CV model may give unphysical predictions such as negative
temperature when two low-temperature cooling thermal waves
meet [32,33]. Besides, the CV model assumes that an instanta-
neous heat flux within solids takes place right after the tempera-
ture gradient has been established across the solid, namely the
temperature gradient is always the cause while the heat flux is
always the reason, which is actually untrue when considering
the micro-structural interactions [34]. The DPL model considers
both the inertia of the heat flux and the temperature gradient to
time and can be reduced to the CV model when sT is negligible
or when the time variation of temperature gradient is slow. For
the case sq < sT, the temperature gradient established across the
solid is a result of the heat flux, implying the heat flux is the cause
and the temperature gradient is the result. But on the other hand,
if sq > sT, the temperature gradient established at an earlier time,
implying that the temperature gradient is the cause and the heat
flux is the result. The DPL model includes four heat propagation
modes: wave mode (sT = 0), wavelike mode (0 < sT < sq), diffusion
mode (sT = sq, since no lag phase exists between the heat flux and
temperature gradient, which is the more general condition for
reduction to the Fourier model in the absence of an initial varia-
tion of the temperature [16]), and over-diffusion mode (sT > sq)
[35,36]. So, the propagation speed of the DPL-wave depends on
both sq and sT [2], where the term ‘‘DPL-wave’’ only refers to
the wavelike behavior of the DPL model. The TM model is based
on the similarity between the phonon gas and the weighty, com-
pressible fluid in consideration of that the heat conduction in
dielectrics is seen as the motion of a ‘‘phonon gas’’. By comparing
Eqs. (2)–(4), it can be known that the TM model considers both
the inertia of the heat flux and temperature to time and space
while the CV model considers only the inertia of the heat flux
to time and the DPL model considers the inertia of the heat flux
and the temperature gradient to time, in which the inertia to
space comes from the nonlocal effects. The propagation speed of
the TM-wave is q=ðqCvTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a=sTM

p
, i.e. q=ðqCvTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
,

which is evidently a function of temperature within the solid.
According to the relationship between the relaxation time of

heat flux and temperature for bulk silicon reported in Refs.
[37,38], 1/sq is proportional to cube of the temperature (i.e.
1/sq / T3) while it is linear to temperature (i.e. 1/sq / T) when
the temperature is higher than the Debye temperature. So, the
CV-wave travels faster under higher temperature. This is also
appropriate for the DPL model if assuming that the relaxation time
of the temperature gradient sT keeps constant and does not change
with temperature. For the TM-wave, considering the case
q=ðqCvTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
, the propagation speed of the TM-wave is

mainly dominated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
, which indicates that the TM-wave
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propagates faster when the temperature is higher. If the CV-wave,
DPL-wave, and TM-wave propagate faster under higher tempera-
ture, the dispersion phenomena of these thermal waves may ap-
pear under the appropriate conditions in consideration of their
similarities with water, sound, and light waves.

Extensive efforts have been devoted to analyze the propagation
processes of thermal waves with analytical and numerical meth-
ods. For the analytical solutions, the most popular methods include
the Laplace transform [26,39], Fourier series expansion [34,40,41],
integral method [42,43] and Green’s function [44,45]. Lam [34] car-
ried out impressive work on the analytical methods and got the
analytical solutions of the CV model, DPL model, and simplified
TM model under time-varying and spatially-decaying laser inci-
dences using the Fourier series expansion. But the analytical solu-
tions in these works are only applicable to the specific
formulations of initial-boundary conditions. Except the analytical
methods, numerical methods can make good estimations on the
propagation processes of thermal waves, especially when dealing
with complex initial-boundary conditions. Torii and Yang [46]
studied the overshooting phenomenon predicted by the CV model
under the continuous-operated-laser and pulsating-laser heat
sources with the MacCormack’s predictor–corrector scheme and
numerical results showed that the temperature overshooting phe-
nomenon of the CV-wave depends on the frequency of the heat
source. Xu et al. [47] also used numerical methods to study the
mechanisms of the overshooting phenomenon predicted by the
DPL model and pointed out that the thermal wave interference re-
sults in the overshooting phenomenon of temperature field and
this phenomenon violates the second law of thermodynamics un-
der the local equilibrium assumption. Ordonez-Miranda and Alva-
rado-Gil [48] used the numerical method to study the heat
transport process governed by the CV model in a system formed
by a finite layer in thermal contact with a semi-infinite layer under
the Dirichlet and Neumann boundary conditions. Lam [49] used a
concise finite difference algorithm based on the Godunov scheme
to investigate the thermal propagation based on the CV model in
solids due to surface laser pulsation and oscillation. Chou and Yang
[50] used the space–time conversion element and solution element
(CESE) method to study the propagation process of the DPL-waves
through single-layer and multi-layer two-dimensional structures
and found the wave, wavelike, diffusive and over-diffusive propa-
gation mode within a single structure. Shen and Zhang [36] em-
ployed a purely numerical explicit total-variation-diminishing
scheme to solve the DPL model under various initial-boundary
conditions and the numerical solutions agreed well with the ana-
lytical solutions reported by Tzou [15]. Hu and Cao [32] adopted
the explicit finite difference method to compared the thermal wave
propagation processes predicted by the CV and TM models and
found that the TM model can conquer the unphysical temperature
under zero predicted by the CV model, which was later confirmed
by Wang et al. [33].

In order to investigate the propagation processes of thermal
waves predicted by the CV, DPL, and TM models, the present work
employed an implicit finite difference method to solve the three
heat conduction models, as well as the Fourier model, under a co-
sine heat flux pulse boundary condition. The dispersion of thermal
waves in the propagation process was observed for the first time.
The mechanisms and features of this phenomenon were studied.
Effects of the amplitude of the heat flux pulse and initial tempera-
ture within solids on the dispersion of TM-waves were analyzed.
Considering the relaxation times of heat flux sq in CV and DPL mod-
els decrease with the temperature increasing, the dispersion phe-
nomena of the CV-waves and DPL-waves were also found. Effects
of the amplitude of heat flux pulse and the relaxation time of heat
flux sq and sT on the dispersion of CV-waves and DPL-waves were
also studied in this work.
2. Numerical method

Considering a one-dimensional heat conduction problem such
as the heat conduction in a thin film, the film was assumed finite
in the x-direction while infinite in the y- and z-directions. A unified
dimensionless method for the Fourier model, CV model, DPL mod-
el, and TM model was adopted. The dimensionless position x⁄, time
t⁄, temperature T⁄, heat flux q⁄, and characteristic times Zq, ZT, ZTM0

are, respectively, defined as:

x� ¼ x=d; t� ¼ t=ðd2
=aÞ; T� ¼ T=T0; q� ¼ q=ðkT0=dÞ;

Zq ¼ sq=ðd2
=aÞ; ZT ¼ sT=ðd2

=aÞ; ZTM0 ¼ sTM0=ðd2
=aÞ;

ð5Þ

where d is the thickness of the thin film. Zq and ZT are the dimen-
sionless relaxation time of the heat flux and temperature gradient,
respectively. ZTM0 is the dimensionless characteristic time in the TM
model at the initial temperature T0.

The corresponding dimensionless expressions of the Fourier
model Eq. (1), CV model Eq. (2), DPL model Eq. (3), and TM model
Eq. (4) are, respectively, as follows
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To get the temperature distribution in the thin film under a heat
flux pulse boundary, the energy conservation equation is also
needed. Using the unified dimensionless units defined in Eq. (5),
the dimensionless energy conversation equation with constant
thermal properties and no heat sources is as follows

@T�

@t�
þ @q�

@x�
¼ 0: ð10Þ

The implicit finite difference method was adopted to calculate the
dimensionless temperature distributions at different instants of
time. The spatial domain used the central difference while the time
domain used the backward difference. Besides, considering the
hyperbolic characteristic of the DPL and TM models, the mixed

derivative term ZT
@2T�

@t�@x� in Eq. (8) and the inertia term of the heat

flux to space ZTM0
T�

q�

T�
@q�

@x� in Eq. (9) adopted the upwind scheme. The
iteration process for the temperature reaches closure when the er-
ror criterion satisfies jT�nþ1 � T�nj 6 10�6.

3. Validation of the numerical method

Before presenting the dimensionless temperature distributions
predicted by the Fourier, CV, DPL and TM models, we need to test
the validity of the implicit finite difference method defined above
in solving these heat conduction models. The implicit finite differ-
ence method for the Fourier model was also introduced and ap-
plied in Ref. [51] and its validity can be guaranteed by Dt⁄/
Dx⁄2 6 0.5, where Dt⁄ and Dx⁄ are the dimensionless time and spa-
tial step in the numerical calculation, respectively. So, this numer-
ical method can be regarded as valid for the Fourier model under
the appropriate dimensionless time and spatial step.

One-dimensional heat conduction problem was considered to
test the validity of this implicit finite difference method. When
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testing the validity of this numerical method for the CV model and
TM model, the same initial-boundary conditions as reported by Hu
and Cao [32] were adopted, as defined in Eqs. (11)–(13):

T� ¼ 1 and q� ¼ 0 at t� ¼ 0; ð11Þ
0.8

1.0

 T
em

p

T� ¼ 0:5 at x� ¼ 0; t� > 0; ð12Þ
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But when testing the validity of this numerical method for the DPL
model, the same initial-boundary conditions as reported by Shen
and Zhang [36] were adopted, as defined in Eqs. (14)–(16):

T� ¼ 1 and q� ¼ 0 at t� ¼ 0; ð14Þ
Fig. 2. Comparison between the spatial dimensionless temperature distributions at
t⁄ = 0.4 and t⁄ = 1.2 predicted by the TM model using the present numerical method
q� ¼ 2 at x� ¼ 0; t� < 0:05 and q� ¼ 0 at x� ¼ 0; t� P 0:05; ð15Þ

and the numerical solution reported by Hu and Cao [32].
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Fig. 3. Comparison between the spatial dimensionless temperature distributions at
t⁄ = 0.4 and t⁄ = 1.4 predicted by the DPL model using the present numerical method
and the numerical solution reported by Shen and Zhang [36].
q� ¼ 0 at x� ¼ 1; t� > 0: ð16Þ

Besides, according to Ref. [32], Zq in the CV model and ZTM0 in the
TM model were both set 1.0. Also according to Ref. [36], Zq and ZT

in the DPL model were set as 1.0 and 0.002, respectively.
Comparisons between the spatial dimensionless temperature

distributions at t⁄ = 0.4 and t⁄ = 1.2 predicted by the CV model
and TM model using the present numerical method and the
numerical solution reported by Hu and Cao [32] are shown in
Figs. 1 and 2, respectively. Meanwhile, comparison between the
spatial dimensionless temperature distributions at t⁄ = 0.4 and
t⁄ = 1.4 predicted by the DPL model using the present numerical
method and the numerical solution reported by Shen and Zhang
[36] is shown in Fig. 3. From Figs. 1–3, it can be seen that the pres-
ent numerical solutions are in good agreement with the numerical
solution reported by Hu and Cao [32] and Shen and Zhang [36]. The
small disaccord is due to the numerical oscillation in the vicinity of
sharp temperature gradient or discontinuities [52], which is also
reported in Refs. [32,46]. From the comparisons above-mentioned,
we can conclude that this implicit finite difference method is valid
in solving the Fourier model, CV model, DPL model, and TM model.
So, this implicit finite difference method can be used to study the
dispersion of thermal waves. Besides, it is fairly obvious that the
heat flux pulse boundary condition is more effective than the con-
stant temperature boundary condition when studying how the
thermal waves propagate in solids and this is especially important
when analyzing the changing processes of the amplitudes and
speeds of thermal waves quantitatively.
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Fig. 1. Comparison between the spatial dimensionless temperature distributions at
t⁄ = 0.4 and t⁄ = 1.2 predicted by the CV model using the present numerical method
and the numerical solution reported by Hu and Cao [32].
4. Physical model

Considering a one-dimensional thin film as shown in Fig. 4, the
thin film is finite in the x-direction while infinite in the y- and z-
directions. The initial-boundary conditions are given as follows

T� ¼ 1 and q� ¼ 0 at t� ¼ 0; ð17Þ

q� ¼ A½1� cosð2pt�=t�pÞ� at x� ¼ 0; t� < t�p and q� ¼ 0 at x�

¼ 0; t� P t�p; ð18Þ

q� ¼ 0 at x� ¼ 1; t� > 0: ð19Þ

where A and t�p are the dimensionless amplitude and duration of the
cosine heat flux pulse, respectively, which were also determined
using the unified dimensionless method defined in Eq. (5). So, the
heat flux pulse can be changed according to the actual research to-
pic by adjusting the dimensionless amplitude A and pulse duration
t�p. For an example, we can enhance the thermal perturbation by
increasing the dimensionless amplitude A of the cosine heat flux
pulse.

Before presenting the numerical solutions, a unified base condi-
tion for these heat conduction models needs to be introduced first.
For the cosine heat pulse, the dimensionless amplitude A and pulse
duration t�p were both set as 0.1 except for particular instructions.
The thickness, initial temperature and relevant thermal properties



Fig. 4. Schematic diagram for a one-dimensional heat conduction problem under a cosine heat flux pulse boundary condition.
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of the thin film also need to be defined. The thickness d of the thin
film was set as 1.0. The initial temperature T0 of the thin film was
set as 1.0. The thermal conductivity k, mass density q, heat capac-
ity Cv at constant volume, Grüneisen constant c were also all set as
1.0, respectively. So, the characteristic time sTM0 in the TM model
was 0.5 at the initial temperature T0. The relaxation time of heat
flux sq was set as 1.0, which was assumed same in the CV model
and DPL model. In order to study the propagation process of the
DPL-wave, the relaxation time of temperature gradient sT in the
DPL model needed to be smaller than sq, and was set as 0.01.
The length and thermal properties mentioned above were all as-
sumed constant in the heat propagation process except for partic-
ular instructions. Therefore, the dimensionless characteristic times
Zq, ZT, ZTM0 in the CV model, DPL model and TM model are 1.0, 1.0,
and 0.5, respectively.

5. Results and discussion

5.1. Comparison of the dimensionless temperature distributions
predicted by the Fourier, CV, DPL and TM models

Under the base conditions defined in Section 4 and the initial-
boundary conditions defined in Eqs. (17)–(19), the spatial
dimensionless temperature distributions at different instants of
time predicted by the Fourier model, CV model, DPL model, and
TM model are shown in Fig. 5(a)–(d), respectively. From Fig. 5, it
can be seen that the heat propagation process predicted by the
Fourier model behaves in a diffusive mode while the heat propaga-
tion processes predicted by the other three models behave in a
wave mode. For the heat conduction models other than the Fourier
model, such as the CV model, DPL model, and TM model, the tem-
perature of some inner regions in the solid may exceed the temper-
ature at the boundary and this is called an overshooting
phenomenon, which was also reported by Xu et al. [47]. The over-
shooting phenomenon violates the second law of thermodynamics
under the local equilibrium assumption [27,47], which means that
the local equilibrium assumption is not applicable for the CV DPL
and TM models. Under this condition, the energy might even trans-
fer in the direction of increasing temperature [36]. It is worthwhile
to mention that the overshooting phenomenon has been explained
successfully by the extended irreversible thermodynamics (EIT)
theory [27,30]. This nonlocal behavior in thermal lagging of the
TM model explains the temperature of some inner regions in the
film at t⁄ = 0.7 exceeds that at earlier time due to the heating by
other inner regions, as shown in Fig. 5(d).

Comparing to the CV model, the introduction of the relaxation
time of temperature gradient sT in the DPL model enhances the
heat diffusion of the DPL-wave. So, at the same instants of time,
the peak temperatures of the DPL-waves are lower than those of
the CV-waves and the DPL-waves are also less sharp than the
CV-waves, as shown in Fig. 5(b) and (c). At the beginning time
t⁄ = 0.1, the peak temperature of the TM-wave is also lower than
that of the CV-wave and the TM-wave is also less sharp than the
CV-wave. This is because the characteristic time sTM in the TM
model is smaller than the relaxation time of heat flux sq in the
CV model and thus making the heat diffusion stronger in the TM-
wave, which gives rise to the lower peak temperatures of the
TM-waves.

In Fig. 5(a), as the heat propagation speed in the Fourier model
is infinite, the dimensionless temperature within the thin film de-
creases to 1.01 rapidly. In Fig. 5(b), the amplitude of the dimen-
sionless temperature predicted by the CV model decreases
gradually along with the CV-wave propagating due to the heat dif-
fusion. Because of the relaxation time sT, the heat diffusion in the
DPL model is stronger than that in the CV model, and hence the
propagation speed of the DPL-wave is faster than the CV-wave
and the decay of the DPL-wave is more significant than that of
the CV-wave. As the characteristic time sTM in the TM model is
smaller than the relaxation time sq in the CV and DPL models,
the propagation speed of the TM-wave is faster than those of the
CV-wave and DPL-wave.

From Fig. 5(d), it can be seen that there is only one peak at the
beginning of the TM-wave, but two peaks appear for the TM-wave
at t⁄ = 0.3 and three peaks appears at t⁄ = 0.5. For the current con-
ditions, this phenomenon does not appear in the CV-wave and DPL
wave, but occurs in the TM-wave. The reason for this is that under
the unified base conditions and dimensionless method, q/(qCvT) is
at least an order of magnitude lower than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
, and hence the

propagation speed of the TM-wave is mainly dominated byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
, which means the TM-wave travels faster in the points

with higher temperature since the thermal properties remain con-
stant. With the time going on, the TM-waves of different propaga-
tion speeds begin to disperse gradually. However, the propagation
speeds of the CV-wave and DPL-wave both remain unchanged
since the relaxation times sq and sT keep constant. As the disper-
sion is similar to the dispersion of water, sound, and light waves,
we call this as the dispersion of thermal waves. Besides, as the
propagation speed of the TM-wave is faster in the points with
higher temperature while slower in the point with lower temper-
ature, new peaks only appear in the rear of the TM-waves relative
to the propagation direction.

5.2. Origin of the dispersion of TM-waves

The dispersion is due to the higher propagation speed of the
TM-wave in the points with higher temperature. Comparing to
the CV and DPL models, the inertia term of heat flux to time
sTM

@q
@t , inertia term of temperature to time sTM

q
T
@T
@t , inertia term of

heat flux to space sTM
q

qCv Tr � q and inertia term of temperature
to space sTM

q
qCv T �

q
TrT in the TM model are all possible origins

for the dispersion, where the inertia term to space comes from
the nonlocal effects. To analyze the effects of these inertia terms
on the dispersion of the TM-waves, according to the CV model as
shown in Eq. (2), the TM model in Eq. (4) can be correspondingly
modified into Eqs. (20)–(23):

qþ sTM
@q
@t
¼ �krT; ð20Þ
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Fig. 5. The spatial dimensionless temperature distributions at different instants of time predicted by the (a) Fourier model, (b) CV model, (c) DPL model, and (d) TM model.
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qþ sTM0
@q
@t
� sTM

q
T
@T
@t
¼ �krT; ð21Þ
qþ sTM0
@q
@t
þ sTM

q
qCvT

r � q ¼ �krT; ð22Þ
qþ sTM0
@q
@t
� sTM

q
qCvT

� q
T
rT ¼ �krT: ð23Þ

For Eq. (20), we can study effects of the inertia term of heat flux to
time on the dispersion of the TM-wave, as shown in Fig. 6(a). This
inertia term is different from that of the CV model because the char-
acteristic time sTM, i.e. a/(2cCvT), in Eq. (20) decreases with the tem-
perature T increasing while sq in Eq. (2) stays unchanged in the
propagation process of the CV-wave, and thus leading to faster ther-
mal wave speed under higher temperature in Eq. (20). For Eqs. (21)–
(23), we can study effects of the inertia term of temperature to time,
inertia term of heat flux to space, inertia term of temperature to
space, respectively. The propagation processes of thermal waves
predicted by Eqs. (21)–(23) are shown in Fig. 6(b)–(d). It should
be mentioned that in Eqs. (21)–(23), in order to avoid the interfer-
ence of the inertia term of heat flux to time, sTM is compulsorily re-
placed by sTM0 since the temperature T in the main region of the
film is near the initial temperature T0. Besides, it is worthwhile to
mention that according to the energy conversation equation
qCv

@T
@t þr � q ¼ 0 with constant thermal properties and no heat

sources, Eq. (21) can be transformed into Eq. (22) by replacing @T
@t

by � r�qqCv
, and therefore effects of the inertia term of temperature

to time and effects of the inertia term of heat flux to space on the
dispersion are same, as shown in Fig. 6(b) and (c).
According to Refs. [16,26], the thermal wave propagation
speeds in Eqs. (20)–(23) are, respectively, as follows

Vq�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT

p
; ð24Þ

VT�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT0 þ

q
2qCvT

� �2
s

þ q
2qCvT

ð25Þ

Vq�x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT0 þ

q
2qCvT

� �2
s

þ q
2qCvT

ð26Þ

VT�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cCvT0

p
ð27Þ

From Eq. (24), it can be seen that the wave propagation speed Vq-t is
larger in the points with higher temperature. So, the dispersion ap-
pears in the wave propagation process when only considering the
effects of heat flux to time, as shown in Fig. 6(a). In the thermal
wave propagation process, the heat flux wave is in accord with
the temperature wave [36], namely the heat flux is stronger in
the points with higher temperature. But for the current conditions,
the increase of temperature is less significant than that of heat flux,
and therefore the wave propagation speeds VT-t as shown in Eq. (25)
and Vq-x as shown in Eq. (26) are mainly dominated by the heat flux
and they are both faster in the points with higher temperature. Be-
sides, from Vq-x defined in Eq. (26), we can know that the introduc-
tion of the nonlocal behavior leads to higher propagation speed
than the CV-wave, which is also reported by Tzou [54]. In Ref.
[54], Tzou not only considered the first-order nonlocal effect which
was included in the TM model, but also considered the second-or-
der nonlocal effect which was not included in the TM model. If
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Fig. 6. Effects of (a) the inertia term of heat flux to time, (b) the inertia term of temperature to time, (c) the inertia term of heat flux to space, and (d) the inertia term of
temperature to space in the TM model on the dispersion of TM-waves, where the inertia term to space comes from the nonlocal effects.
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considering the second-order effects, it can effectively destroys the
sharp wave front of the nonlocal waves, resulting in continuous dis-
tributions of temperature, like diffusion.

As defined in Section 4, the thermal conductivity k, mass den-
sity q, heat capacity Cv at constant volume, Grüneisen constant c
and initial temperature T0 were all set as 1.0 in this paper. So, com-
bining the unified dimensionless units defined in Eq. (5) and the
situation that the dimensionless heat flux is at least one order of
magnitude lower than the dimensionless temperature in this pa-
per, we can know that the change of VT-t and Vq-x with heat flux
is less significant than that of Vq-t with temperature. As a whole,
the dispersion phenomena when analyzing the effects of the iner-
tia term of temperature to time and the effects of the inertia term
of heat flux to space are both less significant than that when ana-
lyzing only the effects of the inertia term of heat flux to time,
which can be seen by comparing with the thermal waves in
Fig. 6(a)–(c). The thermal wave propagation speed VT-x in Eq. (27)
is constant and smaller than other three wave speeds Vq-t, VT-t,
Vq-x, as shown in Eqs. (24)–(26). So, the dispersion does not occur
in the wave propagation process when only considering the effects
of the inertia term of temperature to space and the thermal wave
in Fig. 6(d) travels more slowly than the other three thermal waves
in Fig. 6(a)–(c). Since the unmodified TM model includes effects of
the four inertia terms analyzed above, the dispersion predicted by
the unmodified TM model is more significant than those when
only analyzing the effects of only one of the inertia terms, which
can be seen by comparing with the thermal waves in Figs. 5d
and 6(a)–(c).

In a summary, the underlying mechanism for the dispersion of
the TM-waves is that they can travel faster in the points with
higher temperature considering the temperature dependence of
the relaxation time. The origins of this phenomenon are due to
the inertia term of heat flux to time, inertia term of temperature
to time and inertia term of heat flux to space in the TM model. Ef-
fects of the inertia term of temperature to space on the dispersion
can be neglected. The dispersion of the TM-waves is mainly dom-
inated by the inertia term of heat flux to time. Besides, according to
the energy conservation, it can be inferred that the deeper reason
for the appearance of the temperature peaks is that the energy is
transported into the corresponding region. Meanwhile, the appear-
ance of the temperature troughs is due to the energy transported
out. Therefore, the temperature peaks and troughs are similar to
the focusing and defocusing of heat pluses along nonequilibrium
nanowires reported by Jou and Sellitto [53].
5.3. Effects of the amplitude of heat flux pulse and initial temperature
on the dispersion of TM-waves

Fig. 7 shows the effects of the amplitude of the heat flux pulse
and initial temperature on the dispersion of the TM-waves. As
shown in Fig. 7(a), the peak temperatures of TM-waves increase
significantly with increasing the amplitude of heat flux pulse and
meanwhile the dispersion of the TM-waves is more obvious under
higher amplitude of heat flux pulse since the difference of TM-
wave propagation speeds under stronger heat flux perturbation is
more significant. The propagation speed of the TM-wave is larger
when A = 0.12 than that when A = 0.03 since the temperature dif-
ference in the thin film is higher under higher amplitude of heat
flux pulse. When the dimensionless amplitude A is 0.03, the
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Fig. 7. Effects of (a) the amplitude of heat flux pulse and (b) the initial temperature of the thin film on the dispersion of TM-waves.
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dispersion almost does not appear in the range of computing time.
As shown in Fig. 7(b), the TM-waves travel faster under higher ini-
tial temperature, but the dispersion is very weak and only appears
at t⁄ = 0.5 when T0 = 1.6. This is because when T0 = 1.6, the global
temperature within the film is higher and therefore the character-
istic time sTM in the TM model is smaller, which leads to stronger
heat diffusion. As the heat diffusion is stronger when T0 = 1.6, the
peak temperatures are lower than those when T0 = 0.8. So, when
the initial temperature is sufficiently high, the thermal waves will
not be detected, which is in accord with the experimental results
that the thermal wave phenomena were mainly observed in the
cryogenic environment [2,9]. But if the relaxation times sq and sT

in the CV model and DPL model are both assumed constant and
does not change with temperature, the effects of the initial temper-
ature on the thermal waves will only exist in the TM model be-
cause the relaxation time sTM, as well as the propagation speed
of the TM-wave, greatly depends on the temperature. As shown
in Fig. 7(a) and (b), as the TM-waves move forward, they all be-
come unsymmetrical gradually with the wave front leaning to
the heat propagation direction, which was also reported by Guo
and Hou [16].
5.4. Dispersion phenomena of CV-waves and DPL-waves

In the CV and DPL models, the relaxation time of heat flux sq is
the ratio of the mean free path of phonons to the group speed. sq

was assumed constant in most previous work [32–34,36,47,48]
although it is actually affected by the temperature in actual mate-
rials. According to the relationship between the relaxation time of
heat flux and temperature for bulk silicon reported in Refs. [37,38],
1/sq is proportional to cube of the temperature (i.e. 1/sq / T3) while
the dependence is linear to temperature (i.e. 1/sq / T) when the
temperature is higher than the Debye temperature. Here, we take
Zq = 0.3/T⁄ and Zq = 0.3/T⁄3 for example to investigate whether the
dispersion will appear in the propagation processes of the CV-wave
and DPL-wave. The dimensionless relaxation time of temperature
gradient ZT in the DPL model is set as 10�5, which stayed un-
changed in the propagation process of the DPL-wave. Besides, the
dimensionless amplitude of heat flux pulse A was set as 0.1, same
with the base conditions.

The spatial dimensionless temperature distributions at different
instants of time predicted by the CV and DPL models under the
conditions Zq = 0.3/T⁄ and Zq = 0.3/T⁄3 are shown in Fig. 8. Since
(0.3/T⁄) > (0.3/T⁄3), the peak temperatures of the CV-waves and
DPL-waves are higher when Zq = 0.3/T⁄ at t⁄ = 0.1. But at t⁄ = 0.3
and t⁄ = 0.5, it does not hold because some inner regions can obtain
energy from other regions where the temperature is lower, which
is also caused by the nonlocal behavior in thermal lagging. For the
current conditions, the dispersion appears in the CV-waves and
DPL-waves when Zq = 0.3/T⁄3, but does not appears when Zq = 0.3/
T⁄ in the range of computing time. This is because effects of the
temperature on the relaxation time sq are more significant when
Zq = 0.3/T⁄3 than that when Zq = 0.3/T⁄, and thus leading to the dif-
ferences of thermal wave propagation speeds are more significant
when Zq = 0.3/T⁄3. According to the effects of the amplitude of heat
flux pulse and initial temperature on the dispersion in Section 4.3,
for Zq = 0.3/T⁄, the increase of amplitude of heat flux or the relaxa-
tion time sq itself may lead to the appearance of dispersion in the
range of computing time and this will be presented in the follow-
ing sections. So, for the CV-waves and DPL-waves, the origins of the
dispersion are both the inertia term of heat flux to time sq

@q
@t

� �
.

Besides, under the conditions Zq = 0.3/T⁄ and Zq = 0.3/T⁄3, as the
CV-waves and DPL-waves move forward, they all become
unsymmetrical gradually with the wave fronts leaning to the heat
propagation direction. This trend is same with the TM-waves since
the CV-waves and DPL-waves both travel faster under higher tem-
perature when considering that the relaxation time of heat flux sq

decreases with temperature.

5.5. Effects of the amplitude of heat flux pulse on the dispersion of
CV-waves and DPL-waves

Fig. 9 shows the effects of the amplitude of heat flux pulse on the
dispersion of the CV-waves and DPL-waves under the conditions
Zq = 0.3/T⁄ and ZT = 10�5. With the dimensionless amplitude of heat
flux pulse A increasing, the peak temperatures of the CV-waves and
DPL-waves both increase significantly. When A = 0.2, the dispersion
of the CV-waves and DPL-waves appear at t⁄ = 0.5. But for the cur-
rent conditions, the dispersion does not appear when A = 0.1. This
trend is same with the dispersion of the TM-waves. Therefore, un-
der the condition Zq = 0.3/T⁄, in the range of computing time, the
dispersion can also appear in the propagation process of CV-waves
and DPL-waves if the heat flux pulse perturbation is sufficiently
strong. Besides, it can be seen that at t⁄ = 0.5, the dispersion of the
CV-waves is more obvious than that of the DPL-waves because
the relaxation time of temperature gradient sT in the DPL model en-
hances the heat diffusion of the DPL-waves.

5.6. Effects of sq and sT on the dispersion of CV-waves and DPL-waves

Fig. 10 shows the effects of the relaxation time of heat flux sq on
the dispersion of the CV-waves and DPL-waves under the
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Fig. 8. The spatial dimensionless temperature distributions at different instants of time predicted by the (a) CV model and (b) DPL model under the conditions Zq = 0.3/T⁄ and
Zq = 0.3/T⁄3, where ZT = 10�5 in the DPL model.
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Fig. 9. Effects of the amplitude of heat flux pulse on the dispersion of (a) CV-waves and (b) DPL-waves under the condition Zq = 0.3/T⁄ and ZT = 10�5.
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Fig. 10. Effects of the relaxation time of heat flux sq on the dispersion of (a) CV-waves and (b) DPL-waves under the conditions Zq = 0.3/T⁄ and Zq = 0.6/T⁄, where ZT = 10�5 in
the DPL model.
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conditions Zq = 0.3/T⁄ and Zq = 0.6/T⁄, where ZT = 10�5 in the DPL
model. The dimensionless amplitude of heat flux pulse A was set
as 0.1. The heat diffusion in the CV and DPL models when
Zq = 0.6/T⁄ is both weaker than that when Zq = 0.3/T⁄, and thus giv-
ing rise to faster propagation speeds, higher peak temperatures of
the thermal waves, more sharp thermal waves and more obvious
dispersion when Zq = 0.6/T⁄. For the current conditions, when
Zq = 0.3/T⁄, the dispersion of the CV-waves and DPL-waves does
not occur in the range of computing time and this phenomenon
can occur when using larger amplitude of heat flux pulse or relax-
ation time sq. This trend is also same with the dispersion of the
TM-waves because when the dispersion of the TM-waves is also
weaker under higher initial temperature due to the smaller charac-
teristic time sTM in the TM model under higher temperature.
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Fig. 11. Effects of the relaxation time of the temperature gradient sT on the
dispersion of the DPL-waves under the conditions ZT = 10�3 and ZT = 10�5, where
Zq = 0.6/T⁄ in the DPL model.
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Fig. 11 shows the effects of the relaxation time of the tempera-
ture gradient sT on the dispersion of the DPL-waves under the con-
ditions ZT = 10�3 and ZT = 10�5, where Zq = 0.6/T⁄ in the DPL model.
The dimensionless amplitude of heat flux pulse A was set as 0.1.
The increase of the relaxation time sT leads to stronger heat diffu-
sion, and thus leading to faster propagation speed, lower peak tem-
peratures of the DPL-waves and less sharp DPL-waves. When
ZT = 10�3, the dispersion of the DPL-waves does not occur in the
range of computing time. Therefore, the dispersion of the DPL-
waves can be dominated by the amplitude of heat flux pulse, the
relaxation time of heat flux sq and the relaxation time of the tem-
perature gradient sT. The increase of the amplitude of heat flux
pulse and the relaxation time sq can both enhance the dispersion.
But, on the contrary, the increase of the relaxation time sT will
weaken the dispersion.
6. Conclusions and further work

The dispersion of thermal waves was observed in their propaga-
tion processes based on numerical analyses on typical thermal
wave modes, i.e. Cattaneo–Vernotte (CV), dual-phase-lagging
(DPL), and thermomass (TM). As thermal waves move forward,
many peaks appear in the rear of thermal waves relative to the
propagation direction. The underlying mechanism for the disper-
sion of the thermal waves is that they can travel faster in the points
with higher temperature considering the temperature dependence
of the relaxation time. For the CV-waves and DPL-waves, the ori-
gins of the dispersion are due to both the inertia term of heat flux
to time sq

@q
@t

� �
. For the TM-waves, the origins are due to the inertia

term of heat flux to time, inertia term of temperature to time and
inertia term of heat flux to space in the TM model, and effects of
the inertia term of temperature to space on the dispersion can be
neglected, where the inertia term to space comes from the nonlocal
effects. The dispersion of the TM-waves is mainly dominated by
the inertia term of heat flux to time.

In the TM model, the characteristic time sTM decreases with the
increase of temperature, and therefore the dispersion will appear
in the propagation process of the TM-wave. If keeping the relaxa-
tion time of heat flux sq constant, the dispersion of the CV-wave
and DPL-wave does not appear in their propagation processes.
But for actual materials, if considering that sq decreases with the
temperature increasing, the dispersion of the CV-wave and DPL-
wave will also appear under the appropriate amplitude of heat flux
pulse, relaxation times sq and sT.

Effects of the amplitude of heat flux pulse and the initial tem-
perature on the dispersion of the TM-wave were also analyzed.
The increase of the amplitude of heat flux pulse and the decrease
of the initial temperature both can enhance the dispersion of the
TM-wave. Besides, effects of the amplitude of heat flux pulse, the
relaxation times sq and sT on the dispersion of the CV-wave and
DPL-wave were analyzed. The increase of the amplitude of heat
flux pulse and the relaxation time sq can both enhance the disper-
sion of the CV-wave and DPL-wave, while the increase of the relax-
ation time sT will weaken the dispersion of the DPL-wave.

In the further work, we will investigate the effects of the non-
local behavior on dispersion of the nonlocal thermal wave models,
such as the Guyer–Kruhansl model [24,25] and that proposed by
Tzou and Guo [26], which should include comparisons with those
of the TM model. Besides, the initial-boundary conditions can af-
fect the dispersion of thermal waves, which also needs further
study.
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