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Non-Fourier Heat Conduction
in Carbon Nanotubes
Fourier’s law is a phenomenological law to describe the heat transfer process. Although
it has been widely used in a variety of engineering application areas, it is still question-
able to reveal the physical essence of heat transfer. In order to describe the heat transfer
phenomena universally, Guo has developed a general heat conduction law based on the
concept of thermomass, which is defined as the equivalent mass of phonon gas in dielec-
trics according to Einstein’s mass–energy relation. The general law degenerates into
Fourier’s law when the thermal inertia is neglected as the heat flux is not very high. The
heat flux in carbon nanotubes (CNTs) may be as high as 1012 W/m2. In this case, Four-
ier’s law no longer holds. However, what is estimated through the ratio of the heat flux to
the temperature gradient by molecular dynamics (MD) simulations or experiments is only
the apparent thermal conductivity (ATC); which is smaller than the intrinsic thermal
conductivity (ITC). The existing experimental data of single-walled CNTs under the high-
bias current flows are applied to study the non-Fourier heat conduction under the ultra-
high heat flux conditions. The results show that ITC and ATC are almost equal under the
low heat flux conditions when the thermal inertia is negligible, while the difference
between ITC and ATC becomes more notable as the heat flux increases or the tempera-
ture drops. [DOI: 10.1115/1.4005634]

Keywords: non-Fourier heat conduction, thermomass, carbon nanotubes, thermal
conductivity

1 Introduction

Fourier’s law of heat conduction has been proved valid by
numerous experiments and widely used in a variety of engineering
areas, although it is only a phenomenological law which describes
the essence of heat diffusion. Onsager once pointed out that [1]
“We recognize that Fourier’s law is only an approximate descrip-
tion of the process of conduction, neglecting the time needed for
acceleration of the heat flow.” It is seen that Fourier’s law contra-
dicts the principle of the microscopic reversibility in thermody-
namics. Furthermore, the time needed for acceleration of the heat
flow can be understood as the thermal “inertia,” i.e., the lag effect
of the gradually increased heat flux after the establishment of the
temperature gradient. The thermal inertia is much like the other
forms of inertia existed between ubiquitous generalized fluxes and
forces [2]. The thermal wave induced by the temporal thermal
inertia has been studied in detail by many researchers [3,4]. Later
the hyperbolic heat conduction– radiation problem has been stud-
ied using lattice Boltzmann method [5]. But it is only the appear-
ance of thermal inertia in the unsteady state, the thermal inertia is
not fully described. There has been no universal quantitative anal-
ysis of the thermal inertia until the development of the concept of
“thermomass” by Cao and Guo [6]. Based on the thermomass
model, a general heat conduction law has been created. The ther-
mal wave phenomena can be well described in the thermomass
model [7]. Fourier’s law is only the special case of the general
heat conduction law when the thermal inertia is negligible.

According to Einstein’s mass–energy relation, the equivalent
mass of phonon gas in dielectrics is referred to as the thermomass.
Because the drift velocity of phonon gas is quite small compared
to the speed of light, the Newtonian mechanics is applicable to the
thermomass. The momentum conservation equation for the
motion of the phonon gas/thermomass is actually referred to as
the general heat conduction law. In most cases, the thermal inertia

could be ignored when the heat pulse duration is not extremely
short or the heat flux is not extremely high. But in CNTs under
extreme conditions, some non-Fourier heat conduction behaviors
will be revealed due to the effect of thermal inertia. In unsteady
state, Shiomi and Maruyama [8] studied the wavelike non-Fourier
heat conduction in CNTs heated by subpicosecond pulsed lasers
using molecular dynamics simulations. In steady state, Pop et al.
[9] measured the thermal conductivity of a single-walled carbon
nanotube using an electrical self-heating method under high-bias
current flows. The heat flux could be as high as 1012 W/m2. The
results showed that the average temperature over the nanotube
deviated from that predicted by Fourier’s law with a constant ther-
mal conductivity. Vikram et al. [10] measured the temperature
profiles along an electrically heated individual suspended CNT
using a spatially resolved Raman spectra method. The significant
temperature jumps at the ends of the nanotube were observed,
which was only explained with the contact thermal resistance.
Based on the thermomass theory, these experimental results pro-
vide us some evidences for the existence of the thermal inertia in
the steady heat conduction. This article intends to reveal these
non-Fourier phenomena in CNTs under the ultrahigh heat flux
conditions based on the general heat conduction law.

2 Equation of Motion for Phonon Gas

Phonon is the energy quantum of the quantized lattice vibration
energy, and the state of the thermal vibration energy of lattice can
be characterized as a phonon gas consisting of a large number of
randomly moving phonons [11]. Hence, as the smallest transfer
unit of the lattice thermal energy, the phonon is the main energy
carrier of the heat conduction in the dielectrics. The equivalent
mass of phonon gas, referred to as the thermomass, was derived
from Einstein’s mass–energy relation by Guo et al. [12] as

Mh ¼
ED0

c2
(1)

where Mh is the equivalent mass of phonon gas, c¼ 3.0� 108 m/s
is the speed of light in vacuum, and ED0 is the thermal vibration
energy.
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In addition, Cao [6] established a state equation of the phonon
gas in the dielectrics as

Ph ¼ cqhCT ¼ cq
c2

CTð Þ2 (2)

where c, C, T, q, Ph, and qh represent the Grüneisen coefficient,
specific heat, temperature, density of the dielectrics, pressure, and
density of the phonon gas, respectively. Here, the density of the
phonon gas is qh ¼ qCT

c2 . It is noted that Eq. (2) is very similar to
the state equation of an ideal gas.

The Grüneisen coefficient of phonon gas is the isometric pro-
portion factor of the phonon gas pressure to the thermal energy.
Just like the Grüneisen coefficient of dielectrics, c will decrease as
the degree of compression of phonon gas increases. The Grü-
neisen coefficients in Fig. 1 are calculated by the experimental
results from Ref. [9]. Here, the degree of compression is defined
as d ¼ qh=qh0 ¼ T=T0 (T0 is the ambient temperature).

In Newtonian mechanics, one can obtain the mass and momen-
tum conservation equations of the phonon gas as

@qh

@t
þ qh

@uh

@x
þ uh

@qh

@x
¼ S

c2
(3a)

qh

@uh

@t
þ uh

@uh

@x

� �
þ uh

S

c2
þ @Ph

@x
þ fh ¼ 0 (3b)

where S is the internal heat source, uh ¼ q
qCT is the drift velocity of

the phonon gas. In one-dimensional steady states without internal
heat sources, the momentum conservation equation (3b) can be
simplified as [6]

qhuh
duh

dx
þ dPh

dx
þ fh ¼ 0 (4)

The three terms on the left side of Eq. (4) are the inertia force,
driving force and resistance of the phonon gas, respectively.
When the heat flux is not extremely high and the inertia force
term is ignored, Eq. (4) will reduce to Fourier’s law (see Eq. (5)).
Here, the first-order resistance fh = buh is used, in which

b ¼ 2cq2C3T2

K�c2

dPh

dx
þ fh ¼ 0) K

dT

dx
þ q ¼ 0 (5)

where K is the ATC. It is seen that Fourier’s law is the equivalent
relationship between the driven force and resistance of the
thermomass.

In one-dimensional steady states with constant internal heat
sources, the general heat conduction law could be obtained from
the mass and momentum conservation Eqs. (3a) and (3b) as
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� �
@2T

@x2
þ S ¼ 0 (6)

where KI is the ITC. To simplify the Eq. (6), we assume

q � �KI
@T

@x
� 1

2
SL and then get the simplified form as

KI 1� q2

2cq2C3T3

� �
d2T

dx2
þ 1þ eKIS

cq2C3T2

� �
S � 0 (7)

The parameter e ¼ b�s
4
þ b�2s

32
þ 1þ b�s

4

� �2

and the dimension-less
number b�S ¼ SL2

TKI
, where L is the characteristic length. It is seen

that Fourier’s law is an approximation to the general heat conduc-
tion law when the thermal inertia is ignored. The thermomass
theory reveals the mass nature of heat and connects the heat con-
duction to the other mass transport phenomena.

3 Second-Order Resistance of Thermomass

The phonon gas flow in dielectrics is much like the gas flow in
porous media, and they have the similar governing equations (see
Eqs. (3a) and (3b)). The drift velocity of the phonon gas is usually
quite small. For instance, the drift velocity in carbon is about 10�4

m/s when the heat flux is 105 W/m2. In this case, the first-order re-
sistance fh¼buh is appropriate, where b is the proportional coeffi-
cient. But the drift velocity increases with the increasing heat flux,
the resistance formula may deviate from the first-order relation
when the drift velocity is quite high. Here, we apply the second-
order modification to the resistance of thermomass.

The dimensionless resistance could be defined as

Fh ¼ b�1Uh þ 1
2
b�2U2

h þ 1
6
b�3U3

h þ…, where Fh ¼ L
Ph0

fh, Ph0

¼ cqC2T2
0

c2 . The second-order resistance is written as

fh �
Ph0

L
b�1Uh þ

1

2
b�2U2

h

� �
¼ b1uh þ b2u2

h (8)

The first-order resistance coefficient is b1 ¼
2cq2C3T2

KIc2 ; b�1 ¼ T2

T2
0

. Sim-

ilarly, the second-order resistance coefficient is

b2 ¼ b�2
2cq3C4T2

0
L

K2
I c2 ; b�2 ¼ �b�h2

T2

T2
0

. Then, the governing equation of

thermomass with second-order resistance could be obtained as

KI 1� q2

2cq2C3T3

� �
d2T

dx2
þ 1þ eKIS

cq2C3T2
� b�h2

L2S

TKI

� �
S � 0 (9)

If we set b��h ¼ �
8eð1�gÞ

b�2S

þ b�h2, where the coefficient g

¼ K
KI
¼ 1� q2

2cq2C3T3 ; ð0 � g � 1Þ is the ratio of the ATC to the

ITC. Then, the general heat conduction law with second-order re-
sistance of thermomass in steady states could be written as

KI 1� q2

2cq2C3T3

� �
d2T

dx2
þ 1� b��h b�s
� �

S � 0 (10)

It is clear that if we set g¼ 1 and b*
h2¼ 0, Eq. (10) will reduce to

Fourier’s law.
Fig. 1 Variation of Grüneisen coefficient of phonon gas versus
the degree of compression
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4 Heat Flow Choking Under Ultrahigh Heat Flux

The unsteady motion equation without internal heat source
could be written as

qsC
@2T

@t2
þ qC

@T

@t
¼ KI 1� qCsu2

h

KI

� �
@2T

@x2
� KIuh

cCT

@2T

@t@x
(11)

where s ¼ KI

2cqC2T has a unit of time, corresponding to the relaxa-

tion time in Cattaneo-Vernotte (C-V) model, and is usually in
order of magnitude of 10�10 s. Here, we assume that the time
scale is much larger than the relaxation time and the thermal equi-
librium state can be reached. This assumption is valid in most

cases. Usually
qCsu2

h

KI
� 1, the thermal sound speed (propagation

speed of the thermal disturbance) in the phonon gas can be
expressed as

Ch ¼
ffiffiffiffiffiffiffiffi
KI

qCs

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
2cCT

p
(12)

Tzou [13] investigated the thermal shock phenomena caused by
an ultrafast moving heat source in a solid as the speed of the heat
source exceeds the thermal sound speed. Experimental evidence
has been found by studying the temperature distribution around a
rapidly propagating crack tip [14]. Based on the thermal wave
theory, a thermal Mach number has been brought forward

Ma ¼ us

Ch
(13)

where us is the speed of the internal heat source and Ch is the ther-
mal sound speed.

Likewise, we defined the ratio of the drift velocity of the phonon
gas to the thermal sound speed as the thermal Mach number as

Mah ¼
uh

Ch
(14)

Then, Eq. (10) can be rewritten as

KI 1�Ma2
h

� � d2T

dx2
þ 1� b��h b�s
� �

S ¼ 0 (15)

Based on the general heat conduction law, the non-Fourier behav-
iors in CNTs under ultrahigh heat flux conditions can be studied.
For a CNT electrically heated by high-bias current flows (see
Fig. 2), the drift velocity of the phonon gas increases in the nano-
tube as the phonon gas density qh decreases along the heat flow
direction, just like the gas flow in a converging nozzle.

According to the knowledge of aerodynamics, the flow status of
the converging nozzle is controlled by the Mach number at the
outlet. The flow choking will happen when the Mach number
reaches unity. In the case of phonon gas, the drift velocity
increases with the increasing heat flux/internal heat source. After
the thermal Mach number reached unity, increasing heat flux/in-

ternal heat source will lead to the heat flow choking in CNTs.

Thus, a temperature jump DT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
	

2cq2C3
� �

3

q
� T0 will occur

at the nanotube end, and the heat flux in this case is referred to as

the critical heat flux qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cq2C3T3

0

q
.

The following parameters of the single-walled CNTs are used
in the calculations: the density q¼ 2200 kg/m3, the specific heat
C¼ 500 J/kg K, the thermal conductivity KI¼ 3000 W/mK, the
diameter D¼ 1.8 nm, the length L¼ 10 lm, the electrode temper-
ature T0¼ 300 K, and the heating power S¼ 1.5 lW (the critical
heat flux is 1.8� 1011 W/m2, which corresponds to the heating
power of S¼ 0.7 lW). The cross-sectional area is calculated as
A¼ pDd, in which the nanotube wall thickness d¼ 0.34 nm.

The inset in Fig. 3 shows the increasing thermal Mach number
along the nanotube length.

Since the heat flux of 3.9� 1011 W/m2 in the present calcula-
tion is much higher than the critical heat flux of 1.8� 1011 W/m2,
the drift velocity is as high as 700 m/s at the nanotube end (see
Fig. 3). Also, a significant temperature jump about 200 K occurs
at the nanotube end shown in Fig. 4. The temperature profile
based on Fourier’s law is much lower than that based on the gen-
eral heat conduction law.

The average temperatures over the nanotube are calculated with
a constant thermal conductivity as shown in Figs. 5 and 6 based
on the general heat conduction law and Fourier’s law.

A “turning point” is shown in the temperature curve of general
heat conduction law, which is due to the heat flow choking.
Before the heat flow choking, the average temperature curves
based on Fourier’s law and general heat conduction law are

Fig. 2 An electrically heated CNT suspended between two
electrodes with a typical parabolic temperature profile

Fig. 3 The drift velocity and thermal sound speed in the CNT

Fig. 4 Temperature profiles calculated based on the general
law and Fourier’s law
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almost the same. Nevertheless, after the turning point, the average
temperature from general heat conduction law is higher than that
from Fourier’s law because of the temperature jump at the nano-
tube end. This difference increases with the increasing heating
power.

The experimental data from Ref. [9] are used to compare with
the results from Fourier’s law and general heat conduction law.
The experimental average temperatures are calculated by the
Landauer–Büttiker approach [15,16]

RðV; TÞ ¼ Rc þ
h

4q2
e

Lþ keffðV;TÞ
keffðV;TÞ

(16a)

keff ¼ k�1
AC þ k�1

OP;ems þ k�1
OP;abs

� ��1

(16b)

where h, qe, keff are the Planck constant, elementary charge, and
effective electron mean free path. h

	
ð4q2

eÞ � 6:5KX is the quan-
tum contact resistance.

It is seen that temperature curves predicted by the general heat
conduction law (solid line in Fig. 6) agree well with the experi-
mental results. Of course, there are still some differences between
the predicted temperatures by the general heat conduction law and
the experimental data, which may come from the temperature
dependence of the ITC of the CNTs.

5 Apparent and Intrinsic Thermal Conductivities

As mentioned above, the thermal conductivity gained from MD
simulations or experimental results is normally based on Fourier’s

law, which is in fact the ATC. The ITC can only be gained by the
general heat conduction law (see Eq. (10)). The relation between
ATC and ITC is shown as

K ¼ KI 1� q2

2cq2C3T3

� �
(17)

The ITC is the thermal conductivity when the thermal inertia is
negligible. ATC is equal to ITC when the heat flux is not very
high, but the difference will be notable in CNTs under the ultra-
high heat flux conditions, especially after the heat flow choking.

The ITCs shown in Figs. 7–10 are numerically determined by
the thermomass motion equation (10) with second-order resist-
ance. The abscissa �T is the average temperature over the nano-
tube. It is seen that ITCs under different ambient temperatures
follow the same varying tendency in 250 K	800 K. Furthermore,
the comparison between ATC and ITC is shown in Figs. 11 and
12, where ATCs are numerically determined by Fourier’s law.

It is clear that ATC and ITC are equal when the heating power
is less than 2 lW in this case. After the heat flow choking, the dif-
ference will increase with the increasing heating power. That also
means the thermal inertia could not be ignored in CNTs under the
ultrahigh heat flux conditions.

Fig. 5 Variation of the average temperature of the nanotube
versus the heating power

Fig. 6 Average temperatures based on the general law and
Fourier’s law using the existing experimental data from Ref. [9]

Fig. 7 ITC calculated from Ref. [9] under T0 5 250 K

Fig. 8 ITC calculated from Ref. [9] under T0 5 300 K

Fig. 9 ITC calculated from Ref. [9] under T0 5 350 K
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6 Concluding Remarks

(1) According to Einstein’s mass–energy relation, the equiva-
lent mass of the thermal energy of phonon gas is defined as
thermomass. We obtain the momentum conservation equa-
tion of thermomass based on Newtonian mechanics, which
can be regarded as the general heat conduction law.

(2) Under normal conditions, the general heat conduction law
will reduce to Fourier’s law, since the thermal inertia is
negligible. But the heat flux could be ultrahigh in CNTs,
the effect of thermal inertia will lead to the non-Fourier
behaviors in CNTs.

(3) The phonon gas flow in a CNT is like the gas flow in a con-
verging nozzle. The heat flow is choked as the temperature
and the heat flux at the nanotube end exceed the critical
values, since the thermal Mach number at the nanotube end
cannot be greater than unity. Meanwhile, temperature
jumps occur at the nanotube ends in this case.

(4) The thermal conductivity calculated by Fourier’s law is only
the ATC, which is smaller than the ITC based on the general
heat conduction law. ATC and ITC are almost equal when

the thermal inertia is negligible. But as the heating power
increases, the difference between ATC and ITC will be more
notable especially when the heat flow choking occurs.
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Nomenclature
A ¼ cross-sectional area
c ¼ light speed
C ¼ specific heat

Ch ¼ thermal sound speed
d ¼ nanotube wall thickness
D ¼ nanotube diameter

ED0 ¼ thermal vibration energy
fh ¼ resistant force of phonon gas

Fh ¼ dimensionless resistant force of phonon gas
h ¼ Planck constant
K ¼ apparent thermal conductivity

KI ¼ intrinsic thermal conductivity
L ¼ nanotube length

Ma ¼ Mach number
Mah ¼ thermal Mach number

Mh ¼ thermomass
P ¼ pressure

Ph ¼ phonon gas pressure
Ph0 ¼ characteristic phonon gas pressure

q ¼ heat flux
qc ¼ critical heat flux
qe ¼ elementary charge
R ¼ electric resistance

Rc ¼ quantum contact resistance
S ¼ internal heat source
t ¼ time variable

T ¼ temperature
T0 ¼ ambient temperature
uh ¼ drift velocity of phonon gas
Uh ¼ dimensionless drift velocity of phonon gas
V ¼ voltage
x ¼ x space variable

Greek Symbols
b ¼ coefficient of phonon gas resistant force

b1 ¼ first-order coefficient
b2 ¼ second-order coefficient
b�1 ¼ dimensionless first-order coefficient
b�2 ¼ dimensionless second-order coefficient
b�s ¼ dimensionless internal heat source number

b��h ¼ total dimensionless coefficient of phonon gas resistant
force

c ¼ Grüneisen coefficient
d ¼ degree of compression
e ¼ integral parameter
g ¼ ratio of the apparent thermal conductivity to the intrinsic

thermal conductivity
keff ¼ effective electron mean free path

q ¼ density
qh ¼ density of phonon gas

qh0 ¼ characteristic density of phonon gas
s ¼ characteristic time

Superscript
* ¼ dimensionless parameter

Subscript
h ¼ thermomass

Fig. 10 ITC calculated from Ref. [9] under T0 5 400 K

Fig. 11 ATC with varied temperature and heating power

Fig. 12 ITC with varied temperature and heating power
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