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SUMMARY

A uniform source-and-sink scheme was developed by Cao and Li [J. Chem. Phys. 133 (2010), 024106] to
calculate the thermal conductivity of solid argon. Now, we aim to apply this scheme to the calculation of the
self-diffusion coefficient. We divide the particles into equal halves, and label them with A or B. By exchang-
ing the labels of individual atoms from the right and left half systems, we can produce an internal matter
flux, and hence the internal matter source and sink can be realized. The density profile is piecewise quadratic
throughout the system and the self-diffusion coefficient can be easily extracted from the mean densities of
the right and left half systems rather than by fitting the density profile. In particular, this is a nonequilibrium
molecular dynamics method but established on an equilibrium system. The scheme is applied to calculate
the self-diffusion coefficient by taking a Lennard–Jones fluid as a case, examining its homogeneity, con-
vergence, label exchange interval, and dependence on density, temperature, and system size. The uniform
source-and-sink scheme is demonstrated to be able to give accurate results with fast convergence. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The self-diffusion coefficient is a key parameter for measuring a diffusion process of particles
in a pure fluid, which is widely involved in engineering transport processes, such as separation,
tertiary-oil recovery, and extraction of essential oils. Also, the self-diffusion coefficients set time
and spatial scales of various transport processes in fluids such as in the Stokes–Einstein rela-
tion [1]. Thus, it is highly desired to study the self-diffusion coefficient. Unfortunately, experi-
mental studies on the self-diffusion coefficient are scarce because of the difficulty in measuring
the diffusion of an individual particle while the surroundings are the same species [2, 3]. As
a result, the possible solution points to the ‘computer experiment’, that is, molecular dynamics
(MD) simulation.

The molecular dynamics method is a powerful tool that is widely used in physics, chemistry, and
material sciences, such as simulations of the structure, mechanical and transport properties of car-
bon nanotubes [4, 5], or nanoscale fluid flows [6–8]. The MD methods for calculating the transport
properties can be classified as equilibrium molecular dynamics (EMD) and nonequilibrium molecu-
lar dynamics (NEMD) schemes [9–11]. The EMD methods can either use the Green–Kubo integral
formula to calculate the time correlation function or use the Einstein relation, also known as the
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mean squared displacement method [12]. These two schemes have been proven to be equivalent. In
the case of one-dimensional self-diffusion, the Green–Kubo relation can be expressed as [13]
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In these equations, h: : :imeans the average over particles and time origins. Previous work has shown
the slow decay of the time correlation functions termed as the ‘long time tail’, which may lead to a
very long time convergence [11]. Then, obtaining the precise evaluation of the transport properties
can be rather tough. Therefore, in the process of seeking an optional method, the NEMD schemes,
which converge much faster, are put forward and have been widely applied in recent years.

A good NEMD algorithm should exhibit some features such as homogeneity, fast convergence,
periodic boundary conditions, small temperature gradient, and Hamiltonian [14]. A classical way is
to introduce a perturbation that can generate the same response as experiments, and then through
the resulted flux the transport coefficients can be calculated. An opposite way is to reverse the cause
and effect by imposing a flux that can either be energy, momentum, or matter corresponding to the
calculation of the thermal conductivity, shear viscosity, or diffusion coefficient, respectively [15]. In
the process of calculating these transport coefficients, researchers have reported temperature [16],
velocity [15], and number density [17] jumps at the boundaries, which are quite harmful to acquiring
reliable simulation results. Reference [18] developed a scheme to eliminate the temperature jump at
the boundary by shifting the perturbation into the simulation system, which resulted in a fast excited
vibration relaxation. Furthermore, a uniform heat source and sink based on heating and cooling
individual atoms, which greatly enhanced the relaxation rate, was used in Reference [19].

Thus, a new NEMD method called uniform source-and-sink (USS) scheme, which combines the
ideas of References [14, 18, 19], was developed by Cao and Li [20] and was first used to calculate
the thermal conductivity of solid argon. It shares all the good features mentioned in Reference [14]
and also solves the problem of temperature jump by enhancing the excited phonon modes through
internal heat source and sink. Their work illustrates a small system size effect, fast convergence, and
accurate results of the USS method, which are clearly stated in Reference [20]. Now, we attempt to
extend this scheme from the calculation of thermal conductivity to the self-diffusion coefficient to
further check its validity.

In this paper the USS scheme is realized by exchanging labels of individual particles to calculate
the self-diffusion coefficient of a Lennard–Jones (LJ) fluid. We divide the particles into equal halves
labeled as A and B. Every time we perform a label exchange between two particles with different
labels from the left and right half systems and create a source and a sink for particles A and B,
respectively. We further make the source and sink uniform, so that a periodically quadratic density
profile can be produced and the self-diffusion coefficient can be extracted from the mean densities of
the left and right half systems. In Section 2, we will describe the theory and methodology in detail.
Simulation results are presented in Section 3 with discussion included. Finally, this paper concludes
in Section 4.

2. THEORY AND METHODOLOGY

For the case of heat conduction, energy is transported, which is driven by the temperature differ-
ences and obeys Fourier’s law. Similarly, diffusion occurs because there are density (concentration)
differences, which lead to matter transport following Fick’s law. Therefore, the USS method, which
establishes a heat flux, can also be used to construct a matter flux. For one dimensional self-diffusion,
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Fick’s law is in the form of

mx D�D
@�

@x
, (3)

in which the matter flux is proportional to the gradient of density.
AnN particles system is considered and the particles are divided into equal halves labeled as A or

B. The simulation box is divided into slabs along one direction, say the x direction. The matter flux
is constructed in this way: A slab in the left half system is first selected and we pick up one particle
labeled as A. Then another slab from the right half is chosen and a particle labeled as B is identified.
By exchanging the labels of these two particles, we successfully create a matter flux from the left to
the right (for the A particles) and another flux from the right to the left (for the B particles). Figure 1
exhibits the label exchange process as the particles labeled as A are shown with open circles while
B are shown with solid circles. Then the left half system has a sink for the A particles and a source
for the B particles, while the right half system is just the opposite. We define an exchange interval
W , and everyW time steps, the exchange is performed. The slabs picked up from the two halves are
selected to have minimum exchange rates, respectively, in the left and right half systems, which will
ensure that our matter source and sink are uniform. This is realized by recording the total times of
label exchange of every slab over the past simulation steps. Then in the next step, the slabi and slabj
with the least times of the label exchange are picked out. Because the label exchange is equivalent to
matter exchange, the matter densities of these two slabs will approach those of the others. It should
be noted that the driving force of the matter transport is the density differences of A (B) particles
throughout the system. Because these particles are only distinguished from the labels while their
atomic mass and diameters are the same, the density of particles AC B is identical in the whole
system. Therefore, in the simulations of the self-diffusion coefficient, the USS scheme is used as an
NEMD idea but established on an equilibrium system, because no perturbation is introduced over
the simulation process.

The source or sink in our USS scheme particularly refers to one labeled particles, say particles
A with the source in the right and the sink in the left. For convenience in the next sections of this
paper, we will only focus on particles A, because the label exchange we perform is symmetrical.
Therefore, we can write out the matter source/sink density as (with a negative value meaning the
matter removal rate)

mv D 2

P
transfersm

tLxLyL´
, (4)

in which Lx , Ly , L´ are the box lengths in x, y, ´ directions, respectively, t is the simulation time
and m is the mass of an atom. As discussed above, for every W time steps, a label exchange is

Figure 1. Schematic diagram of the NEMD simulations system applying the USS scheme with open circles
representing the A particles and solid circles representing the B particles.
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performed. Then for our one-dimensional case and steady state, the density profile is in the form of
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where �0 is the mean density of the entire system andD is the self-diffusion coefficient. This piece-
wise quadratic profile results from the combination of the periodic boundary conditions and the label
exchange from one half to the other, that is, the matter source and sink. Then the mean densities of
particles A in the left and right halves of the system can be derived from Equation (5),
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Then we can obtain the average density difference between the left and right mean densities, that is,
N�L and N�R, and the system mean density
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and hence the self-diffusion coefficient can be given as
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3. SIMULATION RESULTS AND DISCUSSION

We calculate the self-diffusion coefficient of a Lennard–Jones fluid to verify the USS scheme. The
Lennard–Jones interaction potential is in the form of
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where r is the intermolecular distance, � is the molecular diameter and " is the potential well depth
[21]. The whole simulation box is divided into 20 slabs along the x direction. As discussed above,
the atoms will be divided into equal halves with different labels as A or B. We use a face-centered
cubic configuration as the initial state for the displacement of the atoms in our simulation box.
The interaction is truncated at an intermolecular separation of rcut D 2.0� and a leap frog Verlet
algorithm [22] with a time step of 0.005� is used to integrate the equations of motion for the
molecules. We use the canonical ensemble through the Nose–Hoover thermostat method to maintain
a constant temperature. Also, the relaxation time is trelax D 0.05� . Then, through Equations (4)–(8),
the self-diffusion coefficient could be extracted.

For convenience, rescaled units are introduced to exhibit the simulation results indicated by the
superscript ‘�’, for example, the temperature T � D T kB=", the density �� D ��3=m, the velocity
v� D v

p
m=", the time t� D t

p
"=m=� D t=� , the diameter r� D r=� , the self-diffusion coefficient

D� DD
p
m="=�[2], and the matter source/sink density m�v Dmv.��

3/=m.
To illustrate our theories above, we first need to have a thorough examination of the inner fea-

tures of the USS scheme. For the Lennard–Jones fluid, we choose a state point of �� D 0.6 and
T � D 1.81 in the liquid state region [23]. The simulated system contains 1000 atoms and the length
of the simulation cell in the x direction is 18.8 � . The box sizes along the three directions satisfy
Lx W Ly W L´ D 2 W 1 W 1. Figure 2(a) shows the density profiles of particles A, which validate our
previous theory that the label exchange along with the periodic boundary conditions indeed creates
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Figure 2. (a) Density profile and (b) time averaged self-diffusion coefficient for exchange interval W D 50,
70, and 100.

a piecewise quadratic distribution of the densities in the slabs. The smaller the exchange interval,
the stronger the perturbation and it will lead to a more obvious deviation from the left and right
mean densities. From Equation (4) we can also conclude that the source and sink matter density will
decrease with the increase of W . Figure 2(b) exhibits the time averaged self-diffusion coefficient
from 1500� to 3000� . The first 1500 � is used for the system to reach a steady state. The fluctuation
is large at first but then quickly converges.

The dependence of the self-diffusion coefficient on the matter exchange interval W is shown in
Figure 3. We record a series of the self-diffusion coefficients along with time under conditions of
different matter exchange intervals. From the statistical error of the fluctuation we can acquire the
uncertainty of the results. There are several points that should be mentioned. First, we can see an
almost monotonic increase of the relative uncertainty with changing exchange intervalW . The least
relative uncertainty is at W D 10 and the value is only ˙0.7%, while the largest is at W D 300

and the value is ˙11.5%. Also, we can tell that when exchange interval W is below 100, the rel-
ative uncertainty is rather small compared with the situation when W is above 100. Second, when
exchange intervalW comes between 10 and 100, we have some relatively similar values of the self-
diffusion coefficients, which also agree well with the reference data [21, 24]. Third, the simulation
indicates that for a weak perturbation, that is, a relatively large matter exchange intervalW , the time
we need to establish a steady state is also relatively long. As a result, the preferable exchange inter-
val should not be too large. However, it may be worth mentioning that a too small exchange interval
will cause the A particles in the left selected slab or the B particles in the right selected slab to be
used up. Then the actual exchange interval is larger than that we have settled initially. Fortunately,
this will not affect the accuracy of the results. Then, for the case of 1000 atoms, we recommend the
exchange interval W chosen to be less than 100.
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Figure 3. Dependence of the calculated self-diffusion coefficient on the label exchange interval. Data are
collected from a simulation case with N D 1000.

Figure 4. Self-diffusion coefficientD� on the isotherm T � D 2.5 as a function of density. aReference [12],
bReference [2], cReference [21], dReference [24], and eReference [25].

The dependence of the calculated self-diffusion coefficient on temperature and density is shown
in Figures 4 and 5. Comparisons with the reference data are also made. Figure 4 is under the super-
critical isotherm T � D 2.5 with the densities ranging from 0.1 to 0.8. Figure 5 is under the isochore
�� D 0.6 with a temperature span of T � D 0.71 � 4.45. All these results are simulated with
1000 particles, and it determines the length of the simulation cell in the x direction. First, the self-
diffusion coefficient decreases with a density increase or with a temperature decrease, which is really
the physics of self-diffusion. Second, our USS scheme can give very close results compared with
the previous works. Third, that the results from Michels and Trappeniers [25] have a big deviation
from others’ works may be due to the system size effect because their simulations were conducted
with only 125 particles.

To check the convergence of the present USS scheme, we perform a direct comparison with
Reference [2] in which the Einstein relation method was used. The simulation parameters agreeing
with Reference [2] are chosen as follows: number of molecules N D 1372, time step dt D 0.003� ,
cutoff radius rcut D 5.5� , temperature T � D 3.0, density �� D 0.2, 0.4, 0.6, and 0.8. Specifically,
for our USS scheme the exchange interval W equals 10 and we use 105 time steps for the system
to reach steady state and another 105 time steps to gather statistics. The calculated self-diffusion
coefficients with comparison to those from Reference [2] are shown in TableI. Apparently, the rel-
ative errors for these four data points are all below 6%, which indicates a good agreement between
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Figure 5. Self-diffusion coefficient D� on the isochore �� D 0.6 as a function of temperature. aReference
[12], bReference [2], cReference [21], and dReference [24].

Table I. Self-diffusion coefficient obtained from Reference [2] and the present USS scheme under
T � D 3.0 for various densities. The statistical uncertainties are shown in the brackets.

�� D 0.2 �� D 0.4 �� D 0.6 �� D 0.8

D�_EMDReferenceŒ2� 1.765(�1.0%) 0.771(�0.5%) 0.419(�0.5%) 0.217(�0.5%)
D�_USS 1.872(0.8%) 0.746(1.2%) 0.395(0.7%) 0.205(1.4%)
Relative error 6.0% 3.2% 5.7% 5.5%

these two methods. In Reference [2], the authors claimed that the statistical uncertainty was esti-
mated to be 0.5% at densities larger than �� D 0.2, and 1% at lower densities. Also, the statistical
uncertainties are gathered in our USS method shown in the brackets of Table I with similar value
compared with the referenced data. Because of the different ensembles and integration algorithms
of Reference [2] and the present work, the relative error between the two methods is larger in all
cases than the corresponding statistical uncertainty. However, considering the small relative error of
less than 6%, we can tell that the results are close enough, indicating the applicability of the USS
method. It should be noted that the total simulation length in Reference [2] is 4500� 6000� and we
perform the USS simulation within 600� . It shows that this USS method can converge faster than
the EMD method without hurting the accuracy of the results.

For the system size dependence of the self-diffusion coefficient, lots of articles have carried out
investigations into this problem. Erpenbeck [11] did a comparison between the Green–Kubo and
NEMD self-diffusion constants on this topic and found that the results exhibited some clear con-
flicts between these two methods. Meier et al. [2] discussed this issue years later, and pointed out
that the system size dependence was different at various densities for the EMD method. Almost at
the same time, Yeh and Hummer [26] showed that the self-diffusion coefficient increased with the
system size growing for EMD and even developed an equation for correction

D�1 DD
�C

T ��

6�	�L�
, (10)

where 	� is the shear viscosity, L� is the system length along the x direction, D� is the simulated
self-diffusion coefficient, and � is a parameter that approximately equals 2.837. Then from Equation
(10) we can obtain the approximate self-diffusion coefficient for infinite system size.

Now, following the path of the predecessors, we will take a look at the system size dependence of
the self-diffusion for the purpose of checking the USS scheme. We choose the state point of �� D 0.7
and T � D 2.75, just the same as Reference [26]. The exchange intervalW forN D 500, 1000, 1500
is 50, 100 for N D 2000 and 200 for N D 4000, 6000. The time we use to reach steady state for
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Figure 6. Dependence of the simulated and corrected self-diffusion coefficients on the system size.

the case of N D 500 � 2000 is 1500� , 2500� for N D 4000, and 5000� for N D 6000. The length
of the system in the x direction ranges from 8.9 to 107.3. The results are shown in Figure 6 with
the corrected results using Equation (10) also included. The shear viscosity used in Equation (10)
equals 1.31 [26]. First, the mean self-diffusion coefficient is 0.2886 by the six data points and the
maximum relative error is only 6.6%. The mean results after correction is 0.3021 and the maximum
relative error is 3.3%. Also, the relative differences between these two series of results decrease
from 11.5% to 0.9% as the system grows larger. Therefore, from the above mentioned points we can
conclude that the system size effect is very small for the scheme. Second, we extend the system size
to a very large one (N D 6000) and previous articles seldom covered that region. Reasonably, the
result with N D 6000 should be quite close to that of the real infinite size system and according to
Reference [26] the corrected result is 0.3194. It indicates that our simulations are accurate. Third,
with the increase of the system size, the self-diffusion coefficient slightly increases except the last
point. However, keeping in mind that the last two points are both similar to the infinite case and
considering the systematic error of the NEMD method, we can accept this small decline. In a word,
the present USS scheme can give accurate results with fast convergence.

4. CONCLUSIONS

We extend the new NEMD approach called uniform source and sink scheme developed by Cao and
Li from simulation of thermal conductivity to the self-diffusion coefficient. We recommend this
NEMD method because it reveals some good features that can benefit the simulation process and
results. First, in the simulation process of the self-diffusion coefficient, no density gradient is intro-
duced, and it guarantees the system is homogeneous. Second, periodic boundary conditions and
the USS scheme lead to a piecewise quadratic density profile. The self-diffusion coefficient can be
extracted directly from the mean densities of the right and left half systems rather than by fitting
the density gradient. Third, for every exchange interval, only two out of many particles in two slabs
are involved in the exchange event. Compared with the whole size of the system, it is the slight-
est perturbation, and hence greatly shortens the time to relax. Fourth, because so many works have
reported boundary jumps of some quantities (e.g., density, temperature, velocity) for the NEMD
methods, which harm the efforts for MD simulations, the source and sink slabs are shifted away
from boundaries and thus the boundary jump is completely eliminated. Apart from all these good
features, this method is very simple to carry out because the label exchange is brief but reflects the
physics of the self-diffusion process. This method yields reliable results compared with the refer-
ence data. Finally, we should point out that in the case of self-diffusion, the present USS scheme is
an NEMD method but established on an equilibrium system.
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