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The Fourier’s law of heat conduction is invalid in extreme conditions, such as the second sound in

solids and anomalous heat conduction in nanosystems. The generalized heat conduction law with

nonlinear and nonlocal effects is derived from both macroscopic thermomass theory and

microscopic phonon Boltzmann method in this paper. The coincidence between thermomass theory

and phonon hydrodynamics is also analyzed through their microscopic basis. The convective term

in the momentum equation of the thermomass theory comes from the nonlinear terms of the

distribution function, which is often neglected in previous phonon hydrodynamics derivations. The

Chapman-Enskog expansion leads to the Laplacian term, which is similar to the derivation of

Navier-Stokes equation in hydrodynamics and inspires the introduction of a Brinkman extension in

the thermomass equation. This comparison reveals how the nonlinear effects could be described by

generalized heat conduction laws. VC 2011 American Institute of Physics. [doi:10.1063/1.3634113]

I. INTRODUCTION

Generally, thermal transport in materials is described by

the Fourier’s law of heat conduction, which is applicable for

most practical situations. However, for fast-transient heat

conduction, the temperature evolution equation based on the

Fourier’s law is parabolic and predicts an infinite speed of

heat propagation. Therefore, the Fourier’s law of heat con-

duction breaks down in modeling laser processing of materi-

als1,2 or high frequency response in IC chips,3 where heat

propagates as thermal waves. On the other hand, the thermal

transport in nanostructure materials, such as nanowires and

nano-films, are quite different from the bulk ones. The low

dimensional materials, such as carbon nano-tubes (CNTs)4–6

and single-layer graphene7 show ultrahigh thermal conduc-

tivities, while some others show decreased thermal transport

properties compared with bulk materials, due to boundary

scattering or confinement of lattice waves.8–11 The size de-

pendent effective thermal conductivity cannot be described

by the Fourier’s conduction law, so a generalized heat con-

duction law is highly required.

From a microscopic point of view, the finite propagation

speed of heat should be attributed to the fact that energy car-

riers move with a limited speed. The Fourier’s law is only an

approximate description, neglecting the time needed for accel-

eration of energy carriers.12 Specifically, the thermal energy

in dielectric solids is carried by phonons, which are the quanti-

zation of the modes of lattice vibrations. Therefore, the heat

conduction equation can be derived from the phonon state dis-

tribution function in non-equilibrium systems. In the theory of

phonon hydrodynamics,13–22 a set of non-Fourier heat conduc-

tion laws have been obtained through solving the phonon

Boltzmann equation. The forms of these conduction laws are

similar to the hydrodynamic governing equations. The time

relaxation term is included and predicts the finite propagation

speed of thermal disturbance. The heat flow through a nano-

wire is analogous to the viscous Poiseuille flow passing

through a tube, so the reduction of effective heat conductivity

of nanowires is explained by the boundary drag. Similar trans-

port equations were derived macroscopically by the extended

irreversible thermodynamics (EIT)23–29 and used to investi-

gate the heat conduction in nanowires.

The thermomass theory also proposes a hydrodynamic-

like description of heat conduction.30–37 The thermal energy

has an equivalent mass (thermomass) according to Einstein’s

theory of special relativity, which should be seen as a part of

the invariant mass of the system in modern physics.38–40 The

nonlocal and nonlinear effects of heat conduction can be

ascribed to the inertia of thermomass. The governing equa-

tion based on the thermomass model predicts the wave-like

heat transport in transient condition and the variation of

effective thermal conductivity with temperature and size of

nanowires at steady state, which agrees with the experimen-

tal results.37 The governing equations derived from the ther-

momass model are also found to be similar to those based on

phonon hydrodynamics and EIT.26 In this paper, we investi-

gate the coincidences between the thermomass model and

phonon hydrodynamics by analysis on the solution of the

phonon Boltzmann equation. The comparison and combina-

tion of different theories are expected to deepen the knowl-

edge of heat conduction in phonon systems.

II. THERMOMASS EQUATION WITH BRINKMAN
EXTENSION

In the thermomass theory, the thermal energy in media

has an equivalent mass defined by the Einstein’s mass-energy

equivalence relation, and the motion of the thermomass can

be described by Newton’s mechanics.30–37 The density of the

thermomass contained in the media is
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qh ¼
qCVT

c2
; (1)

where qCvT represents the thermal energy density and c is

the speed of light in vacuum. The thermomass density, qh,

has a unit of kg�m�3. The drift velocity of the thermomass uh

is defined as

uh ¼
q

qCVT
; (2)

where q is the heat flux vector. The governing equation of

heat conduction could be obtained in analogy with

hydrodynamics

@qh

@t
þr � qhuhð Þ ¼ 0; (3)

qh

@uh

@t
þ qhuh � rð Þuh þr �P ¼ 0; (4)

where P is the stress tensor, and the body force is neglected.

Equation (3) gives the energy conservation relation when

Eqs. (1) and (2) are substituted into it. We temporarily

assume that the thermomass bears a friction in its flow

region, as the Darcy flow in porous hydrodynamics, and

ignore the deviatoric stress tensor; thus, the momentum con-

servation in Eq. (4) can be written as

qh

@uh

@t
þ qhuh � rð Þuh þrph ¼ f h: (5)

The unknown isotropic part of the stress tensor falls into a

simple form based on the Debye state equation

ph ¼ cqhCVT ¼ cq CVTð Þ2

c2
; (6)

where c is the Grüneisen parameter. The Darcy’s law is

applied to give the expression of fh, i.e., the friction is pro-

portional to the drift velocity uh. Since the steady heat con-

duction obeys the Fourier’s law in bulk materials, in this

situation, Eq. (5) turns out to be the balance of driving force

and friction force, i.e.,

rph ¼ f h: (7)

Comparing Eq. (7) with the Fourier’s law, the friction term

appears as30

f h ¼ �buh ¼ �
2cCV qCVTð Þ2

jc2
uh; (8)

where b is the friction coefficient and j is the thermal con-

ductivity of bulk materials. In this way, the generalized heat

conduction equation is given:

sTM

@q

@t
þ 2l � @q

@x
� bjrT þ jrT þ q ¼ 0; (9)

where

sTM ¼
j

2cqC2
VT
; (10a)

l ¼ qj

2cCV qCVTð Þ2
¼ uhsTM; (10b)

b ¼ q2

2cq2C3
VT3
¼ Ma2

h; (10c)

with sTM being the lagging time, l the length vector, and Mah

the Mach number of the drift velocity, uh, relative to the ther-

mal wave speed in the phonon gas, uhs. The first three terms

on the left-hand side of Eq. (9) result from the inertia effects.

The fourth term represents the effect from the pressure gradi-

ent (driving force), and the last term denotes the resistance

as the phonon gas flows through the lattice. Equation (9)

reduces to the C-V equation with the second and third inertia

terms ignored. Cimmelli et al.24,25 obtained a similar govern-

ing equation to Eq. (9) based on a dynamical non-

equilibrium temperature. In their paper, the effect described

by the second and third inertia terms in Eq. (9) has a coinci-

dent counterpart.

Although Eq. (9) gives a porous hydrodynamic equation

for heat conduction, the boundary effects become important

in nanosystems. A Brinkman term was introduced to the tra-

ditional form of Darcy’s law when transitional flow between

boundaries should be taken into account.41 In analogy with

this extension in porous hydrodynamics, the thermomass

governing equation can be modified to

sTM

@q

@t
þ 2lrq� bjrT þ jrT þ q� lr2q ¼ 0; (11)

where l is the effective viscosity of the thermomass and

determined by the thermal properties. In porous media, the

Brinkman extension predicts a boundary layer, wherein the

nonslip or slip boundary condition changes the drift velocity

significantly. However, this boundary layer is usually very

thin and can be ignored in large scale systems. Similarly, the

Brinkman term in Eq. (11) exhibits additional drag by the

walls of the system and should be considered for nanoscale

systems in which the characteristic length of the system is

comparable with the friction boundary layer of the thermo-

mass. In other words, the Brinkman extension is necessary

only if the Knudsen number of the system is large enough.

This extension has also been suggested by Ref. 26 to show

an illustrative and interesting similarity to the nonlinear

extension of the Guyer-Krumhansl (GK) equation, and the

effective viscosity l is related to the square of mean free

path of the energy carriers (see Eq. (1) in Ref. 26).

III. PHONON BOLTZMANN DERIVATION

The phonon hydrodynamics can give generalized heat

conduction laws through solving the phonon Boltzmann

equation.13–22 Generally, the target is to search the real pho-

non distribution function f and, thus, the governing equations

can be obtained. However, many assumptions are required to

solve the Boltzmann equation, as in fluid mechanics. Differ-

ent approaches dealing with the Boltzmann equation lead to

different governing equations. In the following section, the

Boltzmann equation will be analyzed with the concept of

thermomass and compared with other solutions in terms of
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phonon hydrodynamics. This will show the inherent similar-

ity between the governing equations for heat conduction

based on thermomass theory and that based on the phonon

hydrodynamics.

The phonon Boltzmann equation focuses on the distribu-

tion function of phonons to describe its deviation by opera-

tors as

Df k; x; tð Þ ¼ Cf k; x; tð Þ; (12)

where D and C are the drift and collision operators, respec-

tively. The macroscopic variables, such as internal energy

density E and heat flux q, are related to the microscopic dis-

tribution function as19–22

E ¼
X

s

ð
k

�hxsfs; (13)

qi ¼
X

s

ð
k

�hxs
@xs

@ki
fs; (14)

where s is the index of phonon branches, k is the wave vec-

tor, and x is the frequency. The integral is over the whole k
space and then summed over all branches. Sussmann et al.15

deduced a heat conduction equation by neglecting the

Umklapp processes in perfect dielectric crystals by a mean

free time approximation on the distribution function. Guyer

et al.18 carried out an eigenvalue analysis of Eq. (12) to

obtain a comprehensive governing equation as the Guyer-

Krumhansl equation

sR
@q

@t
þ q ¼ �jrT þ l2 r2qþ 2rr � q

� �
; (15)

where ‘ is the mean free path of phonons. The form of Eq.

(15) is similar to Sussmann et al.’s results15 and it is further

discussed by Hardy et al.20 The impact on heat conduction

of Umklapp scattering and other quasi-momentum non-con-

serving processes in Eq. (15) is described by a relaxation

time sR.

The distribution function for equilibrium state follows

the Planck distribution

fE ¼
1

exp �hx=kBTð Þ � 1
: (16)

The normal process tends to relax the distribution function to

the displaced Planck distribution13–15

fD ¼
1

exp �hx� �hk � uð Þ=kBT½ � � 1
; (17)

where u is the so-called drift velocity of the phonon gas. The

resistive quasi-momentum non-conserving process tends to

relax the distribution function to the equilibrium Planck dis-

tribution fE. Thus, a relaxation type of phonon Boltzmann

Eq. (12) can be written as21,22

@

@t
þ vs � r

� �
f s ¼ f s

E � f s

sR
þ f s

D � f s

sN
; (18)

where v is the group velocity and tN is the relaxation time of

the normal process.

In low temperature perfect crystals, the normal proc-

esses are dominant and the Umklapp processes are rare, so

sN � sR; then fD is a good approximation to the real

distribution.13–15 This is the simplest assumption to demon-

strate the structure of the solution of the Boltzmann equation.

The deviation from fD could be taken into account by a

Chapman-Enskog expansion, which will be discussed in

detail in Sec. IV A.

Substituting fD into Eq. (18) gives

@

@t
þ vs � r

� �
f s
D ¼

f s
E � f s

D

sR
: (19)

To obtain a transport governing equation, Eq. (19) could be

multiplied with �ki or �xvi to lead to the drifting or driftless

second sound, respectively.19 The difference between the

two kinds of second sound could be seen from the equation

(cf. Eq. (28) in Ref. 20)

v0II
vII

¼
P

allr 0 v1
�� ��r� �

r v1
�� ��0� �

P3
r¼0 0 v1j jrh i r v1j j0h i

; (20)

where ha|v|bi is the matrix element of the group velocity in

the eigenvector representation, vII and v0II are, respectively,

the velocities of drifting and driftless second sound. Thus,

the treatment leading to the driftless second sound is more

comprehensive. It was addressed by Hardy19 that “the differ-

ent types of second sound should be thought of not as distinct

‘modes’ of heat propagation, but rather as simply different

approximation schemes which lead to the same phenomena.”

According to thermomass theory, the second method is

preferable. In the transport theory for gases,42 multiplying

the Boltzmann equation by the momentum of molecules mv
gives the momentum conservation equation. In phonon

gases, �x is the energy of a phonon and �x/c2 is the equiva-

lent mass according to the thermomass theory. In this way,

�xvi/c
2 presents the collective momentum of the phonon gas

induced by heat flux. It is the real momentum and different

from the quasi-momentum of phonons, i.e., �k. Multiplying

Eq. (19) by �x/c2 and �xvi/c
2 would lead to the mass and

momentum conservation equation for phonon gases, as in

hydrodynamics.42 However, unlike ideal gases in channels,

the phonon gases bear the resistance from the Umklapp proc-

esses or crystal defects. This difference is reflected by a sink

term of the momentum when the collision term in Eq. (19) is

multiplied by �xvi/c
2. In practice, the parameter c2 could be

canceled out from the equations since it is a constant.

Multiplying Eq. (19) by �x and �xvi, respectively, and

integrating it in k space yields

@
Ð

k f s
D�hx

@t
þ
ð

k

vs � rf s
D�hx ¼

Ð
k

f s
E � f s

D

� �
�hx

sR
; (21)

@
Ð

k
f s
D�hxvi

@t
þ
ð

k

vs � rf s
D�hxvi ¼

Ð
k

f s
E � f s

D

� �
�hxvi

sR
: (22)

When the drift velocity u is small, a Taylor expansion of fD
around equilibrium up to second order could be deduced as
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fD ¼ fE þ
@fD

@u Du¼0

���� Duþ 1

2

@2fD

@u2
Du¼0

���� Duð Þ2þo Duð Þ2
	 


¼ fE þ
@fE

@x
k � uð Þ þ 1

2

@2fE
@x2

k � uð Þ2þo Duð Þ2
	 


¼ fE þ fþ þ fþþ þ o Duð Þ2
	 


; (23)

where fE and fþþ are even functions in k space while fþ is

odd. Substituting the second order expansion of fD into Eqs.

(21) and (22) gives

@
Ð

k f s
E þ f s

þþ
� �

�hx

@t
þrj

ð
k

f s
þ�hxvj ¼ �

Ð
k f s
þþ�hx

sR

; (24)

@
Ð

k f s
þ�hxvi

@t
þrj

ð
k

f s
E þ f s

þþ
� �

�hxvivj ¼ �
Ð

k f s
þ�hxvi

sR

: (25)

The integral in the second term in Eq. (24) could be

expressed explicitly through integration by parts

ð
k

f s
þ�hxvj ¼

4

3
uj

ð
k

f s
E�hx ¼ 4

3
ujE ¼ qj: (26)

Since fþþ should be much smaller than fE, its contribution to

the internal energy is reasonably omitted. In addition, sR is

large compared with the characteristic time of evolution. On

the other hand, �x is the summational invariant of the Boltz-

mann equation, since the collision term conserves energy.

Then, Eq. (24) yields

@E

@t
þrjqj ¼ 0; (27)

which is the energy balance relation. The integral in the sec-

ond term in Eq. (25) could be divided into an equilibrium

part and a dynamical part

ð
k

f s
E þ f s

þþ
� �

�hxvivj ¼ dij

ð
k

f s
E�hxvivj þ

ð
k

f s
þþ�hxvivj: (28)

The second term in Eq. (28) could be integrated by parts

ð
k

f s
þþ�hxvivj ¼

5

3
uiujE: (29)

Using all these results in Eqs. (26), (28), and (29), the gov-

erning equation from Eq. (25) turns out to be

@qi

@t
þ 15

16
rj

qiqj

E
þ 1

3
rj

ð
k

f s
E�hx vsð Þ2¼ � qi

sR
: (30)

The third term in the left-hand side of Eq. (30) assumes a

cubic symmetry condition.

The momentum transport Eq. (30) could be compared

with that in the thermomass theory

@qi

@t
þrj

qiqj

E
þriph ¼ �b

qi

E
; (31)

where b is the friction coefficient [cf. Eq. (8)]. Equation (31)

has been modified by adding the thermomass conservation

relation Eq. (3) to show a parallel form with Eq. (30). The

isotropic thermomass pressure is presented in the phonon

Boltzmann method as

ph ¼
1

3

ð
k

f s
E

�hx
c2

vsð Þ2¼
ððð

6p=a

f s
E x; t; kð Þ �hx

c2
v2

xdkxdkydkz: (32)

It is interesting to notice that, in the kinetic theory of gases,

the pressure in x direction is

px ¼
ððð

61

f x; t;vð Þmv2
xdvxdvydvz; (33)

where p is the thermodynamic pressure, f is the localized dis-

tribution function, m is the mass of molecule, and v is the

molecular velocity. Equations. (32) and (33) are actually the

same in physical meaning. The temperature gradient driving

the heat flux corresponds to the pressure gradient of the heat

carriers, just as in hydrodynamics. The phonon gas pressure

can be obtained either macroscopically by Eq. (6) or micro-

scopically by Eq. (32). The predicted relaxation time for Si

at 300 K, based on the first method, is calculated to be

1.4� 10�10 s when the material properties are selected as:

j¼ 149 W m�1 K�1, Cv¼ 704.6 J kg�1 K�1, q¼ 2330 kg

m�3, and c¼ 1.5.43 The second method predicts the thermal

relaxation time to be 0.5� 10�10 s (calculated by Ref. 44).

The experimental value reported by Ilisavskii and Sternin44 is

about 1.5� 10�10 s. This comparison shows that the results

from both methods are of the same order of magnitude.

It should be noticed that the three terms on the left-hand

side of Eq. (30) comes from fþ, fþþ, and fE, respectively. If

only the third term is reserved, it reduces to the traditional

Fourier’s law of heat conduction, i.e., Eq. (1). If the terms

from fE and fþ are reserved, it gives the telegraphic

Cattaneo-Vernotte thermal wave equation, i.e., Eq. (2). The

displaced Planck distribution, when expanded to the second

order, gives a governing equation through solving the Boltz-

mann equation similar to the thermomass theory.

However, the coefficient of the convective term is 15/16

in Eq. (30), while unity in Eq. (32). This can be analyzed by

the change of the phonon energy caused by the Doppler

effect. Specifically, there is a parameter 4/3 in Eq. (26),

which comes from the process of integrating by partsð
k

f s
þ�hxvj ¼ uj

ð
k

f s
E�hxþ

ð
k

�h k � uð Þ @x
@kj

f s
E

¼ uj

ð
k

f s
E�hxþ 1

3
uj

ð
k

�hxf s
E

¼ uj

ð
k

f s
E�hxþ Buj

ð
k

�hxf s
E:

(34)

This process assumes the cubic symmetry and agrees with

Sussmann’s integration.15 It means that, besides a uniform

motion of the equilibrium distribution function fE with the

drift velocity uj (the first part of Eq. (34)), there is an addi-

tional part (measured by B) caused by the derivative of �x
with respect to the wave vector k. The parameter 15/16 in

Eq. (30) is (1þ 2B)/(1þB)2 and less than unity. This effect

comes from the Doppler behavior of phonon gas during the

drift motion, which is demonstrated by the second term in
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Eq. (35). The phonon gas is different from the gas consisting

of real particles, since the energy of phonon varies with the

drift motion, so the convective term is “gibbous”.

IV. COMPARISON WITH CHAPMAN-ENSKOG
EXPANSION AND EIGEN ANALYSIS

A. Chapman-Enskog expansion

In Sec. III, the displaced Planck distribution is used to

approximate the real distribution. However, it is reasonable

only if the crystal is pure and kept at low temperature. The

Umklapp processes and other scattering mechanism do not

conserve the quasi-momentum of phonon gas,13 so the real

distribution deviates from the displaced Planck distribution

and relaxes to fD by a relaxation time sN.

In Guyer’s paper,18 the Laplacian term (second term on

the right-hand side of Eq. (15)) is proportional to sN:

l2 ¼ sNc2
D

5
; (35)

where cD is the Debye average velocity. When sR is large in

Eq. (18), sN can be seen from

fD � f ¼ sN @=@tþ v � rð Þf ; (36)

which is close to that in Sussmann’s paper (cf. Eq. (3) in

Ref. 15). This variable indicates the relaxation time of the

deviation of the real distribution from fD. It could be recog-

nized that fD means a uniform drift of the phonon gas, so the

Laplacian term in Eq. (15) comes from the non-uniform drift.

Thus, the local drift velocity gradient will cause an addi-

tional resistance though the phonon Boltzmann equation. If

the anisotropic part is introduced in the thermomass stress

tensor P in Eq. (4), it leads to the Laplacian term in Eq.

(11), as in hydrodynamics.

In more general cases, Larecki and Jiaung et al.21,22 have

solved the phonon Boltzmann equation using the Chapman-

Enskog expansion, as in hydrodynamics. It is common in their

methods that: 1) The real distribution could be expressed by

an expansion about the displaced Planck distribution:

f ¼ fD þ ef1 þ e2f2 þ :::; (37)

where e is the Knudsen number and equals the ratio between

the mean free path of a particle and the scale of variations of

hydrodynamic fields. 2) The first order expansion f1 is pro-

portional to the relaxation time sN. 3) Because of the first

order Chapman-Enskog expansion, a Laplacian term appears

in the governing equation of the heat flux, just as that in

hydrodynamics.20 The results by Jiaung et al.22 are consist-

ent with Hardy’s,20 while the Larecki’s21 results are much

more complicated.

Their results could be compared with Sussmann et al.,15

where the real distribution is assumed to be

f ¼ fD � sN @=@tþ v � rð ÞfD: (38)

This function satisfies the three features of Jiaung and Lar-

ecki’s21,22 method mentioned above.

It is observed that the three dimensional Larecki’s gov-

erning equation without the Chapman-Enskog expansion is

very similar to Eq. (30) [see Eq. (2.10c) in Ref. 21],

@qi

@t
þ 1

3
rj

ð
k

f s
E�hx vsð Þ2þrjM

ij ¼ � qi

sR
; (39)

where the lowest approximation of Mij is

M
ij

0 ¼
3

2Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 � 3 qj j2= vsð Þ2

q qiqj �
1

3
dij

� �
: (40)

Given the drift velocity uh is small in ordinary cases and the

isotropic trace of the second term in Eq. (28) has not been

separated and added into the first term, Eq. (39) could be

reformed as

@qi

@t
þ 3

4
rj

qiqj

E
þ 1

3
rj

ð
k

f s
E�hx vsð Þ2¼ � qi

sR
: (41)

It is consistent with Eq. (30), except the coefficient of the

second term.

Thus, it is confirmed that the Laplacian term in governing

equations comes from the expansion around the displaced

Planck distribution, which becomes important with a large

Knudsen number for the heat conduction in nanosystems.

B. Eigen analysis of normal process collision matrix

Guyer, Krumhansl, and Hardy18,20 solved the phonon

Boltzmann equation by the method of Eigen analysis. They

obtained the governing equation at low temperature and in

dispersionless media:

@q

@t
þ 1

3
vsð Þ2rE ¼ � q

sR
þ sN vsð Þ2

5
r2 þ frr�
� �

q; (42)

where f is 2 in Ref. 18 and 1/3 in Ref. 20, respectively. This

discrepancy has been analyzed in Ref. 20. The four eigen-

vectors of the normal process collision matrix with vanishing

eigenvalues are the single energy eigenvector f0 and the three

crystal momentum density eigenvectors f1, f2, and f3. It is

assumed that all other eigenvectors have non-vanishing

eigenvalues. The Laplacian term in Eq. (42) comes from this

assumption. For b¼ 1, 2, and 3, the last term in the govern-

ing equation for eigenvectors f is (see Eq. (15) in Ref. 20)

X3

a¼0

X
r�4

X
l�4

b Dþ Rj jrh i l Dþ Rj jah i
Nl

fa; (43)

where hajD 1 Rjbi is the matrix element of the operator

D 1 R in the eigenvector representation, Nl denotes the lth

eigenvalue of the normal process collision matrix, and R is

the resistive collision operator (including the Umklapp pro-

cess and other momentum non-conservation processes). The

drift operator D contains the spatial differential, so this term

gives the Laplacian term. If the eigenvectors r and l have

vanishing eigenvalues, it could be seen that the Laplacian

term vanishes synchronously. To formulate the Laplacian

term in the governing equation, eigenvectors beyond the
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displaced Planck distribution should be entangled with the

first four eigenvectors and given non-vanishing eigenvalues.

This treatment is consistent with the Chapman-Enskog

expansion in Sec. IV A.

In the derivation in Sec. III, the displaced Planck distri-

bution is adopted. If only the first two terms in Eq. (23) are

considered, the distribution functions fE and fþ are the eigen-

vector with vanishing eigenvalues of the normal collision

matrix by a Krumhansl’s transform (see Eq. (17) in Ref. 17).

However, fEþ fþ is just a first order approximation of fD. If

f1, f2, and f3 are strictly proportional to the heat flux, they

should have small but non-vanishing eigenvalues; if they

have vanishing eigenvalues, they should contain high orders

of the heat flux. Neglecting such effects will drop the con-

vective terms in Eq. (30).

V. CONCLUSION

1) A Brinkman extension is introduced into the thermomass

momentum conservation equation as a Laplacian term,

which is important when the characteristic size of the sys-

tem is comparable with the mean free path of energy car-

riers. This extension introduces the viscosity of the

thermomass and occurs in media only if the thermal trans-

port behavior in the boundary layer is significant. The re-

sultant governing equation includes the pressure gradient

(driving force), inertia, and friction terms (resistant

force). The extended thermomass governing equation is

applicable for nanosystems in which the Knudsen number

is large. This equation is consistent with the G-K model

with a convection term, which is also addressed as the

nonlinear G-K equation.

2) The phonon Boltzmann equations are used to deduce the

governing equation with the concept of thermomass.

Assuming that the real distribution could be character-

ized by a second order Taylor series expansion of the

displaced Planck distribution, we derive the governing

equation, which is close to that given by the thermomass

theory. The concept of thermomass guides the process to

transform the Boltzmann equation to the conservation

equations of mass and momentum, just as in hydrody-

namics. The driving force of heat conduction is

described by the pressure gradient. However, the con-

vective term may be not full through the Doppler effect,

i.e., the change of frequency when the phonon gas is

drifting.

3) Compared with the Chapman-Enskog expansion and the

Eigen analysis in phonon hydrodynamics, the convective

term in the present governing equation comes from a

higher order approximation of the displaced Planck distri-

bution, and the Laplacian term comes from the deviation

of the real distribution from the displaced Planck distribu-

tion. The deviation is usually assumed to be proportional

to the relaxation time of the normal collision, so the coeffi-

cients of the Laplacian term in the governing equation

behave similarly. This behavior is similar to the derivation

of the Laplacian term in Navier-Stokes equation through

the Chapman-Enskog expansion in hydrodynamics.

4) It should be pointed out that this paper does not consider

phonon-wall interactions, which are actually important for

the theory of phonon hydrodynamics and its applications

in nanosystems. The slip boundary condition of heat flow

at high Knudsen number, which may play a significant role

in nanoscale heat conduction, should be taken into account.

We are on the way to investigate the thermomass model

and phonon hydrodynamics at high Knudsen numbers.
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