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Abstract 
We report on the superhydrophobicity of self-organized surfaces of polyethylene 
(PE) nanowire arrays that are fabricated by a nano-injection moulding technique. 
The highly-aligned PE nanofibers with high aspect ratio are formed after the 
infiltration of polymer melts into the alumina nanopores by wetting action and fluid 
vibrational perturbation. The self-organized surfaces of polymer nanowire arrays 
are found to have micro-to-nanoscale hierarchical nanostructures, and have 
superhydrophobicity of >150° contact angles. The present superhydrophobic 
surfaces may be quite promising due to its simple but massive production with high 
quality. 
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1. Introduction 

Superhydrophobic surfaces are highly desired in the fields of micro-/nanoscale heat 
transfer and fluid flow. As for the heat transfer, the small tension of a superhydrophobic 
surface may greatly decrease the interaction between a liquid droplet and the solid so that 
the superhydrophobic surface can supply anti-icing or anti-dewing properties,(1-3) control the 
solid-liquid thermal resistance,(4-6) and produce very high boiling heat transfer coefficient (7). 

In addition, liquid flow and droplet control in micro- and nanochannels are widely used in 
recently advanced MEMS/NEMS and biochip systems.(8-10) Surface effects substantially 
dominate the fluid flow due to the high surface-to-volume ratio in such micro- and 
nanoscale devices. Recently quite a few literatures have been published to show that liquids 
flowing over a solid surface do slip and the no-slip boundary condition is merely an 
approximation at macroscopic scale. The velocity slip of liquid flows at a solid surface has 
been measured experimentally and simulated by molecular dynamics simulations as 
reviewed in Ref. 10. Wettability of a surface is shown to be one of the dominant factors. A 
hydrophobic surface can effectively enhance the velocity slip, and consequently decrease 
the flow friction.(10-14) 
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Originally inspired by the unique property of superhydrophobicity of lotus leaves(15) 
and water strider legs(16), which is specially called the “Lotus Effect”, researchers try to 
produce superhydrophobic surfaces through nanostructuring them. Traditional ways mainly 
include creating rough structures on a hydrophobic surface and modifying a rough surface 
by materials with low surface free energy. Various processes have been developed to 
fabricate micro/nano-patterns with superhydrophobicity based on silicon, metal, glass, 
carbon nanotubes, polymer, or organic coatings.(17,18) Among these technologies, the 
micro/nano-injection moulding method has advantages of simple fabrication, high-quality, 
low-cost, mass-production, (19,20) especially for micro-/nanoscale fluidic and heat transfer 
devices.  

In this paper, we report on the fabrication of superhydrophobic self-organized surfaces 
of high-density polyethylene (HDPE) nanowire arrays by a nano-injection moulding 
method. The surface shows superhydrophobicity and its contact angle reaches >150°, which 
is attributed to the self-organized and hierarchical surface nanostructures. Theoretical 
analyses based on the Cassie model are also presented. 

2. Fabrication of Nanowire Arrays 

The nanoporous template wetting technique, originally developed by Steinhart et al. (21), 
is now improved to enhance the polymer infiltration into the nanopores by a high-frequency 
fluid pulsation strategy, as schematically shown in Fig. 1. Actually, the main part of the 
setup is a chamber with the pressure controlled by the pressure meter, the temperature 
controlled by the thermal cycle spring, and the vibrational perturbation generated by the 
piezoelectric transducer and amplifier. In the original nanoporous template wetting 
technique, the polymer infiltration is driven by the capillary force. In the present 
nano-injection moulding technique, the polymer injection process is mainly driven by the 
resultant action of the capillary force, pressure and vibrational perturbation. During the 
infiltration process, a vibration with a frequency about ~10 KHz induced by the 
piezoelectric transducer is imposed. This technique is able to produce several times longer 
polymer nanowires compared with the original wetting template technique.(22) It indicates 
that the present injection is dominated by vibrational hydrodynamics rather than just by 
wetting behaviors. 

 

 
Figure 1  Schematic of the fabrication system by the nano-injection moulding technique. 
(1) Pressure meter; (2) Temperature controller; (3) Oscilloscope; (4) Alternating current 

generator; (5) Piezoelectric amplifier; (6) Piezoelectric transducer. 
 

The fabrication procedure is schematically shown in Fig. 2. First, the porous anodic 
alumina (PAA) templates with pore diameters of 200 nm are purchased from Whatman, Inc. 
The PAA templates are freestanding disks with a diameter of 13 mm, and their pores are all 



 

 

Journal of  Thermal 
Science and Technology  

Vol. 6, No. 2, 2011

206 

through-hole. The PAA templates are firstly treated with solvents of different polarities, i.e. 
ethanol, acetone, chloroform and hexane in sequence. Second, the HDPE films with 
thickness of about 300 µm, density of 0.945 g/cm3 and melting index of 13.0 g/10 min are 
obtained from Qilu Petroleum and Chemical Co. of China. A HDPE film is then placed on 
the top of a template with a good contact. Third, the sample is placed into the chamber, and 
the chamber containing the PE film and template sample is then heated to 160 ºC by the 
thermal cycle springs, well above the melting point of HDPE (130 ºC), to excite the 
infiltration of the PE melts into the nanopores of template. Under the driving from the 
capillary force, pressure and vibration, the PE melts infiltrate into the nanopores. Actually 
we can control the infiltration length by adjusting the infiltration time. In the present paper, 
two hours of infiltration may prepare us nanowire arrays with about 50 µm in thickness. 
Moreover, the vibration does help the polymer chains to be more oriented due to the 
oscillatory shear rates(23,24) so that the present polymer nanowire arrays also have very high 
thermal conductivity (more than 10 W/mK)(25). Fourth, the sample is cooled down to 
ambient temperature. The polymer melts solidify gradually. Finally, the HDPE nanowire 
arrays are then released by removing the template in NaOH aqueous solution and being 
rinsed with deionized water and ethanol and being dry at 30 ºC in vacuum in sequence. 

 

 
Figure 2  Fabrication procedure of the nano-injection moulding technique. 
 (1) Template; (2) Sample including PE film and template; (3) Infiltration;  

(4) Solidification; (5) Nanowire array releasing. 
 

 
 

 
Figure 3  Cross-section (a) and top view (b) SEM images of the HDPE nanowire array 

surfaces. 

~10 kHz vibration
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3. Results and discussion 

The cross-section and top view images, characterized by scanning electron microscopy 
(SEM, Leica Stereoscan 440) and field-emission scanning electron microscopy (FE-SEM, 
JEOL JSM-6335F), of the as-fabricated HDPE nanowire array are shown in Figs. 3. All 
samples were coated with 5 nm Au before measurements. From Fig. 3(a), we can see that 
the nanowires are of high quality, such as well-defined, straight, smooth in surface and 
uniform in diameter, thanks to the good PAA templates. From the top view SEM images 
shown in Fig. 3(b), we can see that the nanowire array surface has a micro-to-nanoscale 
hierarchical structure. During the releasing process of the nanowire arrays, the solvent 
evaporates and dries gradually, and the nanowires are very easy to form bundles. The 
construction of the bundles is random in direction and orientation, i.e. self-organized. 
Therefore, the surface structure spans microscale to nanoscale, and is hierarchical. For the 
lotus leaf, the micro- and nanoscale hierarchical structures, like fractal topology, on the 
surface contribute to its superhydrophobicity.(17) A surface with multiscale character was 
found to be better for its hydrophobicity enhancement.(26) Therefore, the present 
self-organized hierarchical structures are greatly helpful for enhancing the surface 
hydrophobicity. 

 

 
 

 
 

Figure 4  Contact angles of water droplet on native HDPE surface (a), and nanowire 
array surface (b). 

 
The wettabilities of the flat and self-organized HDPE surfaces are characterized by a 

high-speed contact angle measuring system (OCAH 200, Dataphysics, Germany) at room 
temperature (20 ºC). The HDPE native flat surface shows slightly hydrophobic with a water 
contact angle of about 102.2°, as shown in Fig. 4(a). The reference values from literature 
[22,27,28] range 99°-104.4°. While the nanowire array surface show much higher 
hydrophobicity with a water contact angle of about 151.8°, as shown in Fig. 4(b). We can 
say that the present nano-injection technique, having advantages of simple, massive 
production and high quality, can prepare us superhydrophobic polymer surfaces. The 
technique is promising for developing micro-/nanoscale fluidic and heat transfer devices. It 
should be pointed out that there may be still room for us to optimize the hydrophobicity of 
the polymer nanowire array surfaces through varying the nanowire diameter, length, 
releasing parameters etc. 

Traditionally, the wettability of a rough surface can be characterized by the well-known 
Cassie model(29). The interaction between a droplet and a rough surface is weakened by 
patches of air beneath the micro-to-nanoscale hierarchical nanostructures. The Cassie model 
for rough surfaces is 
 1cos ( cos 1)n ff fθ θ−= + −  (1) 
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where θn and θf are, respectively, the contact angles of the nanowire array and flat surfaces, f 
is the area fraction of the liquids contacting with the surface. For the present nanowire array 
surface, we have θn=151.8° and θf=102.2°, so the area fraction of the present self-organized 
surface is only 15%. 

4. Conclusions 

We report on the superhydrophobicity of self-organized surfaces of polyethylene (PE) 
nanowire arrays that are fabricated by a nano-injection moulding technique. The 
self-organized surfaces of polymer nanowire arrays are found to have micro-to-nanoscale 
hierarchical structures, and have superhydrophobicity of >150° contact angles. Based on the 
Cassie model, the area fraction of the present self-organized surface is only 15%.The 
present superhydrophobic surfaces may be quite promising for developing micro-/nanoscale 
fluidic and heat transfer devices due to its simple but massive production with high quality. 
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