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Abstract  A two-dimensional molecular dynamics  
(2DMD) simulation is applied to gaseous microflows. Based 
on a velocity distribution function in equilibrium, the mean 
molecular speed, mean collision frequency, mean free path, 
and the dynamical viscosity are deduced theoretically. A    
Maxwell-type-like boundary condition for two-dimensional 
(2D) systems, which reveals a linear relationship between the 
slip length and the mean free path, is also derived. These 
expressions are consequently employed to investigate the 
rarefied gas flow in a submicron channel. The results show 
reasonable agreements with those by 3D simulations, and 
indicate that the 2DMD scheme can be very promising for 
the microflow researches because of its high efficiency in 
computation. 
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Due to the rapid advancement of the micro/nano- 
technology, known as MEMS and NEMS (micro/nano- 
electro-mechanical-systems) over the past decade, physics 
of fluid flows on the microscale has formed one of the 
frontiers of science and technology[1,2]. Fluid flows are 
often encountered in the operating and controlling of mi-
cro- and nano-devices. Fluid flows on the microscale often 
show different characteristics from those on the normal 
scale, including boundary velocity slip, surface force ef-
fects and other unconventional effects[3]. These effects 
mostly arise from the interparticle interactions of the fluid 
and between the fluid and its boundary, and cannot be 
fully explained by conventional models based on the con-
tinuum assumption. 

The method of molecular dynamics (MD) simulation, 
which shows a significant advantage of making no routine 
approximations, has recently been used for probing the 
microfluidic mechanics. However, the scale of the simu-
lated flow system is generally limited to nanometers be-
cause of the heavy burden of computation[4—7]. The 2D 
molecular dynamics (2DMD) simulation attracted atten-
tion in probing the nature of melting/freezing transition of 
physisorbed gases and 2D solids in the 1980s[8]. The phase 
diagram and some thermodynamic properties of a 2D sys-
tem have been studied[9]. The 2DMD simulation has also 

been applied to microflow studies in recent years[10,11]. 
Nevertheless, the theory and methodology of molecular 
kinetics in a 2D system are short of clarification yet. 

The present paper focuses on the molecular kinetics 
of a 2D system and its application to gaseous microflows. 
Kinetics of gaseous molecules and the slip boundary con-
dition (BC) for a 2D gaseous flow are studied. The out-
comes are employed in a 2DMD simulation of rarefied gas 
flows in a microchannel. 

1  Kinetic theory of gaseous molecules in a 2D system 

Firstly, we introduce some necessary assumptions 
which are also adopted by traditional kinetic theory of 
gases: i) Molecular chaos: The space and velocity distri-
bution of molecules in an equilibrium state is uniform. 
The molecular behaviors and their statistical characteris-
tics in a given state are irrelevant to those before their col-
lisions. ii) Ideal gases based on hard-sphere model: The 
elastic collisions between molecules take place instanta-
neously, and obey classical mechanics. iii) The number 
density of gaseous molecules cannot be too low to relate 
their macroscopic statistical properties with the micro-
scopic molecular behaviors. 

According to the molecular chaos and equipartition 
of energy theorem, the thermophysical parameters of a 2D 
system may be defined as 

 21 1 ,
2t imv kT

N
ε = ∑ =  (1) 

  (2) ,P nkT=

in which T is the temperature, P is the pressure, n is the 
number density, N is the molecule number, m is the mole-
cule mass, tε  is the mean kinetic energy of all molecules, 
vi is the velocity of the molecule numbered by i, and k is 
the Boltzmann constant. 

We now turn our attention to the velocity distribution 
function of molecules. On the basis of the symmetry of the 
velocity distribution, the distribution function can be de-
scribed as 

  (3) 
2 2( )( ) ,x yv vf v Ae β− +=

in which the integral constants A and β are determined by 
the conditions 
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The above equations give 
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Thus, the distribution function for molecular velocities in 
a 2D system may be written as 
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The distribution of molecular velocities is uniform in 
space. It is hardly surprising that the distribution function 
in a 2D system is different from that in a 3D one by reason 
of the dimensionality reduction. 

It is then easy to define the distribution function of 
molecular speeds as 
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The distribution function of relative speeds is 
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On the basis of the distribution functions of molecular 
velocities and speeds, some parameters of a 2D molecular 
system are obtained as shown in table 1. 

Table 1  Comparison of parameters of 2D and 3D systems 

Parameter 2D 3D 

Mean speed 
2
kTv
m

π=  8kTv
mπ

=  

Mean relative speed 2rv v=  2rv v=  

Collision frequency 2 2nvχ σ=  22 nvχ π σ=  

Mean free path 
1

2 2n
λ

σ
=  2

1
2 n

λ
π σ

=  

Molecular flux 
1 nvψ
π

=  1
4

nvψ =  

Dynamical viscosity 
2 nmvµ λ
π

=  1
2

nmvµ λ=  
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2  Slip boundary condition 
Because a gas-molecule cannot go through an 

impermeable wall, the momentum exchange across the 
gas-wall interface strongly depends on the frequency of 
collisions between the gas-molecules and the solid surface. 
Strictly speaking, the frequency may not be infinite gener-
ally. Therefore, discontinuity of velocity, which is often 
referred to as slip velocity (us), may appear at the 
gas-solid interface.  

A rarefied gas flow near a solid wall in a 2D system 
is shown in Fig. 1. Following Maxwell, we introduce the 
tangential momentum accommodation coefficient ς 
(TMAC), which is defined as the fraction of molecules 
reflected from a wall diffusively. In other words, the 
TMAC shows the proportion of the lost tangential mo-

mentum of incident molecules. Total momentum carried 
by incident molecules may be written as 

 in s
1 1 .

2 d
uI nvmu
z

µ
π

= + d  (9) 

The molecules will give fraction ς of their tangential mo-
mentum to the surface. Thus, momentum carried by re-
flected molecules is  
 

 
 

Fig. 1.  Schematic of slip boundary condition. 
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We can write the momentum conservation equation 
as 

 in out
d .
d
uI I
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Using the physical parameters defined in a 2D sys-
tem, we solve for the slip velocity as 

 s
2 d .

d
uu
z

ς λ
ς
−=  (12) 

The expression is completely like the Maxwell model for-
mally. The slip coefficient is defined as α =(2−ς)/ς, which 
lies on the fraction of the reflected molecules diffusively. 
It is a function of the interaction between gas molecules 
and the surface. If all the molecules undergo diffusive 
reflections, the experiential value of α =1 holds. 

The slip length may be defined as 
  (13) s .L αλ=

Scaled by the characteristic length of the flow system, the 
dimensionless slip length ls=Ls/H may be written as 

  (14) s ,l Knα=

in which Kn=λ/H is known as the Knudsen number char-
acterizing the rarefaction degree of a 2D flow. 
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3  2DMD simulation details 
(ⅰ) Simulation method.  Our molecular dynamics 

simulation models a 2D Couette system, as shown in Fig. 
2. The flows are induced by translating the walls with ve-
locities of U=158 m·s−1 in the positive and minus 
x-directions respectively. Gaseous argon undergoes shear 
between two platinum plates, which enclose a microchan-
nel with a distance H=0.1 µm. A periodic boundary condi-
tion is used in the x-direction. 

To maintain a realistic gas-solid boundary condition, 
we build atomic structure walls based on Einstein theory 
that the wall atoms vibrate around the face-centered-cubic 
(FCC) [1,1,1] lattice sites with the Einstein frequency 
tethered by a harmonic spring of stiffness 

 
4 2 2 2

2
16 ,k mE

h
π θ=  (15) 

where kB and are the Boltzmann and Prantl constant, 
respectively, is the mass of a wall atom, and θ=180 K 
is the Einstein temperature. 

h
m

 

 
 

Fig. 2.  Schematic snapshot of the 2D Couette system. 
 

Particles interact with each other via a Lennard-Jones 
6-12 potential of the form 
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in which r is the intermolecular distance, ε and σ are the 
energy and molecular diameter parameters. The parame-
ters used in this paper are listed in Table 2. 

 
Table 2  Potential parameters used in our simulations 

Parameter Value Parameter Value 

εAr-Ar 1.67×10−21 J εPt-Ar 0.894×10−21 J

σAr-Ar 3.405×10−10 m σPt-Ar 3.085×10−10 m

 
The molecules move according to Newton’s second 

law. The equations of motion are integrated using a leap-
frog-Verlet algorithm[12] with a time step of ∆t =2.14 ps. 

To reduce the time-consuming part of the calculation of 
interparticle interactions, we mainly take two measures: 
ⅰ) A typical potential cutoff of rcut=2.5 σAr-Ar is used. ⅱ) 
The link-cell method is adopted. The system is kept at 
constant temperature T=273 K for each simulation by a 
velocity rescaling method. Steady-state velocity profiles 
often require an equilibrium time about 1500000 time 
steps in our simulations. The averaging was then carried 
out for about 3000000 steps. 

(ⅱ) Analyses of computation amount.  The amount 
of computation in the 2DMD and the 3DMD simulations 
can be assessed on the basis of their methodologies. At the 
same size of the flow system and the same Knudsen num-
ber, if the boxes of the simulated systems are assumed to 
be equilateral, a 3DMD has to compute more particles 
than a 2DMD as described by 

 3D 2D
2 ,HN N

σ π
=  (17) 

and  

 w3D w2D ,HN N
d

=  (18) 

in which N is the molecule number, Nw is the atom number 
building the walls, σ is the molecule diameter, and d is the 
nearest distance of neighbor wall-atoms. It is clear that the 
particle number in a 3D system should be much more in a 
larger scale system comparing with that in a 2D one. Con-
sidering the system scale the present paper simulates, we 
can deduce particle numbers that a 3DMD simulation 
need to compute (Table 3). 

In molecular dynamics simulations, the calculation 
of the interparticle interactions is the most time- consum-
ing part. In our simulations, an efficient Link-Cell method 
is used for calculation of the short ranged force between 
particles. Using the general cell structure in two dimen-
sions, we need to examine NP2D particle pairs of 

 
2

w
P2D 2 2

1 9 6 .  (19) 
2

NMNN
M M

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠

For three dimensions, we have to examine NP3D pairs of 
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Here, cut/M H r  is the cell number of the simulated 
box in a certain dimension direction. Furthermore, the 
forces considered in a 2DMD with two dimensions is cut 
down about 1/3 of a 3DMD which had to calculate inter-
actions relating to three dimensions. Taking the case of 
3000 molecules in our 2DMD, the amount of a 2DMD 
computation is only about 1/2000 of a 3DMD. 
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Table 3  Particle numbers in our 2DMD and a 3DMD at the same Knudsen number  

(wall-atom number Nw, 2D: 2490, 3D: 1033350. Gas-molecule number N) 
Kn  0.009 0.017 0.037 0.056 0.072 0.084 0.10 0.116 
2D 15000 7000 3000 2000 1500 1200 1000 800 
3D 3223840 1504460 644770 429850 322380 257900 214920 171940 

 
4  Simulation results 

(ⅰ) Velocity fields.  Fig. 3 shows the velocity pro-  
files of the Couette flow in the x-direction obtained by our 
simulations. The Knudsen numbers are from 0.009 to 
0.116. The flows are in the slip regime by the traditional 
theory of rarefied gas dynamics, which is clearly indicated 
by our simulations in Fig. 3. Primarily, it shows that the 
profiles are linear in the middle of the channel as pre-
dicted by continuum Navier-Stokes equations, and that 
different velocity slips due to the rarefaction effect appear 
in the region adjacent to the wall with a thickness of the 
order of the mean free path for different Knudsen numbers. 
As the Knudsen numbers increase, the slip velocities be-
come more pronounced. The results may indicate the ap-
plicability of the continuum theory accompanied by the 
slip condition for slip flows on the submicron scale.  
 

 
 

Fig. 3.  Velocity profiles for various Knudsen numbers. 
 

(ⅱ) Slip boundary condition.  In Fig. 4, we present 
variation of the dimensionless slip length for different 
Knudsen numbers obtained by our simulations. The slip 
lengths are derived from the linear lengthening of the ve-
locity profiles. The dimensionless slip length appears 
proportional to the Knudsen number as predicted by eq. 
(14). The TMAC could then be extracted by fitting the 
slope of the ls−Kn curve. At 273 K, the slip coefficient is 
about 9.14 by our simulation for flows of gaseous argon 
over the smooth platinum surface, which is in approximate 
agreement with the 3DMD result of 9.5 by Yamamoto at 
300 K[13]. 

(ⅲ) Velocity distributions.  In the second section of  

 
 

Fig. 4.  Dimensionless slip length vs. Knudsen number. 
 
this paper, the slip boundary condition has been shown to 
be a Maxwell-type-like model. Thus, the velocity distribu-
tion function of reflected molecules in the direction paral-
lel to the surface may be written as 

 out out in in M w( ) (1 ) ( ) (f v u f v u f v u ),ς ς− = − − + −  (21) 

in which fin is the velocity distribution function of incident 
molecules, fM is the velocity distribution function of re-
flected molecules diffusively (eq. 6). uin, uout and uw are 
macroscopic velocities of incident molecules, reflected 
molecules, and wall respectively. They are generally asso-
ciated by uw=(uin+uout)/2. 

In Fig. 5, the velocity distributions are shown for in-
cident and reflected molecules in our simulation with 
Kn=0.056. They appear in good agreement with the theo-
retical predictions of eq. (21). 
 

 
 

Fig. 5.  Velocity distribution parallel to the wall. 
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5  Conclusions 
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