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Abstract A two-dimensional molecular dynamics
(2DMD) simulation is applied to gaseous microflows. Based
on a velocity distribution function in equilibrium, the mean
molecular speed, mean collision frequency, mean free path,
and the dynamical viscosity are deduced theoretically. A
Maxwell-type-like boundary condition for two-dimensional
(2D) systems, which reveals a linear relationship between the
dip length and the mean free path, is also derived. These
expressions are consequently employed to investigate the
rarefied gas flow in a submicron channel. The results show
reasonable agreements with those by 3D simulations, and
indicate that the 2DMD scheme can be very promising for
the microflow researches because of its high efficiency in
computation.
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Due to the rapid advancement of the micro/nano-
technology, known as MEMS and NEMS (micro/nano-
electro-mechanical-systems) over the past decade, physics
of fluid flows on the microscale has formed one of the
frontiers of science and technology™2. Fluid flows are
often encountered in the operating and controlling of mi-
cro- and nano-devices. Fluid flows on the microscale often
show different characteristics from those on the normal
scale, including boundary velocity dlip, surface force ef-
fects and other unconventional effects®. These effects
mostly arise from the interparticle interactions of the fluid
and between the fluid and its boundary, and cannot be
fully explained by conventional models based on the con-
tinuum assumption.

The method of molecular dynamics (MD) simulation,
which shows a significant advantage of making no routine
approximations, has recently been used for probing the
microfluidic mechanics. However, the scale of the simu-
lated flow system is generally limited to nanometers be-
cause of the heavy burden of computation®2. The 2D
molecular dynamics (2DMD) simulation attracted atten-
tion in probing the nature of melting/freezing transition of
physisorbed gases and 2D solidsin the 19805, The phase
diagram and some thermodynamic properties of a 2D sys-
tem have been studied™®. The 2DMD simulation has also
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been applied to microflow studies in recent years*®,
Nevertheless, the theory and methodology of molecular
kineticsin a2D system are short of clarification yet.

The present paper focuses on the molecular kinetics
of a 2D system and its application to gaseous microflows.
Kinetics of gaseous molecules and the dlip boundary con-
dition (BC) for a 2D gaseous flow are studied. The out-
comes are employed in a2DMD simulation of rarefied gas
flows in a microchannel.

1 Kinetictheory of gaseous moleculesin a 2D system

Firstly, we introduce some necessary assumptions
which are also adopted by traditiona kinetic theory of
gases: i) Molecular chaos. The space and velocity distri-
bution of molecules in an equilibrium state is uniform.
The molecular behaviors and their statistical characteris-
ticsin agiven state are irrelevant to those before their col-
lisions. ii) Ideal gases based on hard-sphere model: The
elagtic collisions between molecules take place instanta-
neously, and obey classical mechanics. iii) The number
density of gaseous molecules cannot be too low to relate
their macroscopic statistical properties with the micro-
scopic molecular behaviors.

According to the molecular chaos and equipartition
of energy theorem, the thermophysical parameters of a 2D
system may be defined as

— 11
f= X m = KT, )

P = nkT, 2
in which T is the temperature, P is the pressure, n is the
number density, N is the molecule number, mis the mole-
culemass, ¢ isthe mean kinetic energy of all molecules,

v; is the velocity of the molecule numbered by i, and K is
the Boltzmann constant.

We now turn our attention to the velocity distribution
function of molecules. On the basis of the symmetry of the
velocity distribution, the distribution function can be de-
scribed as

f(v) = Ae D) €)

in which the integral constants A and S are determined by
the conditions
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Thus, the distribution function for molecular velocities in
a 2D system may be written as

m(v +V, )

fV =2 7€ T (6)

The distribution of molecular velocities is uniform in
space. It is hardly surprising that the distribution function
in a2D system is different from that in a 3D one by reason
of the dimensionality reduction.

It is then easy to define the distribution function of
molecular speeds as

2

mnwv -
f(v)= Ee 2T (7
The distribution function of relative speedsis
nNZ
f(v)= e T )

On the basis of the dlstr|but|on functions of molecular
velocities and speeds, some parameters of a 2D molecular
system are obtained as shown in table 1.

Tablel Comparison of parametersof 2D and 3D systems

Parameter 2D 3D
Mean speed v [ZKT v BT
2m m
Mean relative speed \7,=x/§\7 \ =/2v
Collision frequency 7 =22nvo 7 =~[2rvo?
1
Mean free path A= =
P 2J2no J2zno?
1 — —
Molecular flux Y=—nv w==nv
V4
) L 2 - —
Dynamical viscosity U =—nmvi U ==nmvi
T

2 Slip boundary condition

Because a gas-molecule cannot go through an
impermeable wall, the momentum exchange across the
gas-wall interface strongly depends on the frequency of

collisions between the gas-mol ecules and the solid surface.

Strictly speaking, the frequency may not be infinite gener-
aly. Therefore, discontinuity of velocity, which is often
referred to as dip velocity (uy), may appear at the
gas-solid interface.

A rarefied gas flow near a solid wall in a 2D system
is shown in Fig. 1. Following Maxwell, we introduce the
tangential momentum accommodation coefficient ¢
(TMAC), which is defined as the fraction of molecules
reflected from a wall diffusively. In other words, the
TMAC shows the proportion of the lost tangential mo-
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mentum of incident molecules. Total momentum carried
by incident molecules may be written as

|in=%ﬂms+lﬂ—. (9)

The molecules will give fraction ¢ of their tangential mo-
mentum to the surface. Thus, momentum carried by re-
flected moleculesis

Fig. 1. Schematic of dlip boundary condition.

~(1-¢) nvmu o1 ﬂd“j (10)
2" d
We can write the momentum conservation equation
as
du
Iin_loutzzua' (11)

Using the physical parameters defined in a 2D sys-
tem, we solve for the dip velocity as
2-¢ ,du

ug = .
* ¢ dz

(12
The expression is completely like the Maxwell model for-
mally. The dip coefficient is defined as o =(2—g)/g, which
lies on the fraction of the reflected molecules diffusively.
It is a function of the interaction between gas molecules
and the surface. If al the molecules undergo diffusive
reflections, the experiential value of a =1 holds.
The dlip length may be defined as

L, =cd. (13)

Scaled by the characteristic length of the flow system, the
dimensionless slip length [s=L4/H may be written as

ls = aKn, (14)
in which Kn=A/H is known as the Knudsen number char-
acterizing the rarefaction degree of a 2D flow.
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3 2DMD simulation details

(1) Simulation method. Our molecular dynamics
simulation models a 2D Couette system, as shown in Fig.
2. The flows are induced by trandating the walls with ve-
locities of U=158 m » s* in the positive and minus
x-directions respectively. Gaseous argon undergoes shear
between two platinum plates, which enclose a microchan-
nel with adistance H=0.1 um. A periodic boundary condi-
tion isused in the x-direction.

To maintain a realistic gas-solid boundary condition,
we build atomic structure walls based on Einstein theory
that the wall atoms vibrate around the face-centered-cubic
(FCC) [1,1,1] lattice sites with the Einstein frequency
tethered by a harmonic spring of stiffness

_167°k*m’o?
==
where kg and hare the Boltzmann and Prantl constant,

respectively, mis the mass of a wall atom, and 6=180 K
isthe Einstein temperature.

E : (15)

Fig. 2. Schematic snapshot of the 2D Couette system.

Particles interact with each other via a Lennard-Jones
6-12 potential of the form

O RGN

in which r is the intermolecular distance, eand o are the
energy and molecular diameter parameters. The parame-
ters used in this paper are listed in Table 2.

Table2 Potential parameters used in our simulations

Parameter Value Parameter Value
Enrar 1.67X10%] Eovar 0.894X 1072 J
Oarar 3.405X10m ObrAr 3.085X10%m

The molecules move according to Newton's second
law. The equations of maotion are integrated using a leap-
frog-Verlet algorithm®2 with a time step of At =2.14 ps.
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To reduce the time-consuming part of the calculation of
interparticle interactions, we mainly take two measures:
1) Atypica potentia cutoff of re=2.5 oar.ar isused. 1ii)
The link-cell method is adopted. The system is kept at
constant temperature T=273 K for each simulation by a
velocity rescaling method. Steady-state velocity profiles
often require an equilibrium time about 1500000 time
steps in our simulations. The averaging was then carried
out for about 3000000 steps.

(ii) Analyses of computation amount. The amount
of computation in the 2DMD and the 3DMD simulations
can be assessed on the basis of their methodologies. At the
same size of the flow system and the same Knudsen num-
ber, if the boxes of the simulated systems are assumed to
be equilateral, a 3DMD has to compute more particles
than a 2DMD as described by

H 2
Nap =——Nyp, (17)
o
and
H
Nysp = F Nw2p (18)

in which N is the molecule number, N,, is the atom number
building the walls, ois the molecule diameter, and d is the
nearest distance of neighbor wall-atoms. It is clear that the
particle number in a 3D system should be much morein a
larger scale system comparing with that in a 2D one. Con-
sidering the system scale the present paper simulates, we
can deduce particle numbers that a 3DMD simulation
need to compute (Table 3).

In molecular dynamics simulations, the calculation
of the interparticle interactions is the most time- consum-
ing part. In our simulations, an efficient Link-Cell method
is used for calculation of the short ranged force between
particles. Using the general cell structure in two dimen-
sions, we need to examine Npyp particle pairs of

1 N2 _NM
NPZD:E(9W+6 MZWJ' (19)

For three dimensions, we have to examine Npsp pairs of

2

v S
Here, M =H/ry, is the cell number of the smulated
box in a certain dimension direction. Furthermore, the
forces considered in a 2DMD with two dimensions is cut
down about 1/3 of a 3DMD which had to calculate inter-
actions relating to three dimensions. Taking the case of
3000 molecules in our 2DMD, the amount of a 2DMD
computation is only about 1/2000 of a 3DMD.
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Table3 Particle numbersin our 2DMD and a3DMD at the same Knudsen number
(wall-atom number N,,, 2D: 2490, 3D: 1033350. Gas-molecule number N)

Kn 0.009 0.017 0.037 0.056 0.072 0.084 0.10 0.116
2D 15000 7000 3000 1500 1200 1000 800
3D 3223840 1504460 644770 429850 322380 257900 214920 171940
4 Simulation results 20
(1) Velocity fields. Fig. 3 shows the velocity pro- 1: i
files of the Couette flow in the x-direction obtained by our 141
simulations. The Knudsen numbers are from 0.009 to 12k
0.116. The flows are in the dlip regime by the traditional - 10}
theory of rarefied gas dynamics, which is clearly indicated 0.8
by our simulations in Fig. 3. Primarily, it shows that the 0.6 |- i :
profiles are linear in the middle of the channel as pre- 0.4} o E;{:}ﬁ}j“.i‘;’g data
dicted by continuum Navier-Stokes equations, and that 0.2
different velocity slips due to the rarefaction effect appear 0.0,% 0.05 010 013 020
in the region adjacent to the wall with a thickness of the Kn

order of the mean free path for different Knudsen numbers.

As the Knudsen numbers increase, the dip velocities be-
come more pronounced. The results may indicate the ap-
plicability of the continuum theory accompanied by the
slip condition for dip flows on the submicron scale.
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Fig. 3. Velocity profiles for various Knudsen numbers.

(ii) Slip boundary condition. In Fig. 4, we present
variation of the dimensionless dlip length for different
Knudsen numbers obtained by our simulations. The dlip
lengths are derived from the linear lengthening of the ve-
locity profiles. The dimensionless dlip length appears
proportional to the Knudsen number as predicted by eq.
(14). The TMAC could then be extracted by fitting the
slope of the I<Kn curve. At 273 K, the dip coefficient is
about 9.14 by our simulation for flows of gaseous argon
over the smooth platinum surface, which isin approximate
agreement with the 3DMD result of 9.5 by Yamamoto at
300 K122,

(iii) Velocity distributions.  In the second section of
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Fig. 4. Dimensionless dlip length vs. Knudsen number.

this paper, the dip boundary condition has been shown to
be a Maxwell-type-like model. Thus, the velocity distribu-
tion function of reflected molecules in the direction paral-
lel to the surface may be written as

1Eout (V_uout) = (1_ §) fin (V_uin) + §fM (V_ UW), (21)

in which f;,, is the velocity distribution function of incident
molecules, fy is the velocity distribution function of re-
flected molecules diffusively (eq. 6). Ui, Uy a@nd u, are
macroscopic velocities of incident molecules, reflected
molecules, and wall respectively. They are generally asso-
ciated by Uy=(Uint+Uou)/2.

In Fig. 5, the velocity distributions are shown for in-
cident and reflected molecules in our simulation with
Kn=0.056. They appear in good agreement with the theo-
retical predictions of eg. (21).
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Fig. 5. Velocity distribution parallel to the wall.
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5 Conclusions

1) On the basis of the velocity distribution function
in equilibrium, the molecular mean speed, mean collision
frequency, mean free path, and the dynamical viscosity are
deduced theoretically.

2) A Maxwell-type-like boundary condition for a 2D
flow system is derived. Though it has a similar appearance
to the initial Maxwell model, physical parameters corre-
sponding to a 2D system should be adopted.

3) The 2DMD simulation not only characterizes the
gaseous microflow well, but is also efficient in computa
tion.
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