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General expression for entropy production in transport processes based on the thermomass model
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The entropy production in classical irreversible thermodynamics is expressed as a bilinear form of generalized
(driving) forces and conjugated (driven) fluxes, which suffers from the arbitrary decomposition of the forces and
the fluxes, and the possible negative entropy production in non-Fourier heat conduction problems (heat waves).
This paper presents a general form of the entropy production for heat conduction based on the thermomass model,
which is the product of the friction force and the drift velocity of the thermomass divided by the temperature; it
holds true for both Fourier and non-Fourier heat conduction. Then a generalization of the entropy production is
given for other kinds of linear and nonlinear transport processes. The general expression for entropy production
is consistent with that given by extended irreversible thermodynamics, where the system entropy depends not
only on the classical variables, but also on the dissipative fluxes, for example, the heat flux in heat conduction
problems.
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I. INTRODUCTION

The establishment of classical irreversible thermodynamics
(CIT) can be traced back to 1931, when Onsager postulated
the reciprocal relations in two of his papers [1]. He deduced a
“dissipation function” with a bilinear form of the “forces” and
“velocities.” The theory was further developed by Prigogine
[2,3] and de Groot and co-workers [4–9] with the dissipation
function clarified to be the entropy production σ s . The entropy
production in CIT is a bilinear product of the thermodynamic
(generalized) forces, or driving forces X, and the conjugated
fluxes, or driven fluxes J [4,7]:

σ s =
∑

α

Jα Xα. (1)

CIT assumes a linear relationship between the thermodynamic
forces and fluxes, so it is also regarded as linear irreversible
thermodynamics. CIT has been applied well in many fields. For
instance, the reciprocal relations facilitate analyses of the cross
effects of various irreversible processes, such as thermoelectric
and thermophoresis effects; the least dissipation of energy [1];
the minimum entropy production principle for stationary states
[2,3] based on variational principles can be used to derive the
transport equations and for thermodynamic optimization of
irreversible processes [10–12].

However, CIT is still imperfect. First, the decomposition of
the forces and fluxes in the entropy production expression
is to some extent arbitrary [4,13,14]. For instance, the
thermodynamic force in heat conduction processes can be
defined as −∇T , −∇ ln T , or ∇(T −1) in Fourier’s picture,
the energy picture or the entropy picture, respectively [15].
Soon after the establishment of the reciprocal relations, the
ambiguity in the selection of these forces and fluxes was found
to be harmful to the reciprocity theorem [16]. Therefore, the
physical identification of the thermodynamic forces and fluxes
is very important and is regarded as one of the fundamental
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questions about CIT [14,16]. Second, the linear relations
between the forces and fluxes are not accurate in some cases,
such as for chemical reactions and rheological flows, which
are generally characterized by nonlinear constitutive equations
[4,13,14]. The linear heat conduction law is applicable only
in normal practical conditions. When combined with the
energy conservation relation, the linear Fourier law of heat
conduction leads to a parabolic evolution function for the state
variables, which predicts the nonphysical infinite propagation
speed of thermal perturbations. Many efforts have been made
to establish more general laws for irreversible processes
in extreme conditions. The Cattaneo-Vernotte (CV) model
[17–19] [see Eq. (7)] for heat conduction, which contains
a heat flux relaxation term, gives a hyperbolic evolution
function which removes the paradox of the infinite propagation
speed. A similar modification is used to remove the paradox
of Fick’s law [20–24] and Newton’s viscosity law (i.e., the
Maxwell model for viscoelasticity) [21,25–27]. Since the heat
flux is not proportional to the temperature gradient or the
thermodynamic force, the entropy production is no longer
positive semidefinite, which seems to violate the second law
of thermodynamics [13,28]. This deviation from linearity
undermines CIT theories, which motivated the development of
extended irreversible thermodynamics (EIT) [13,28–39]. EIT
introduces fluxes as independent variables and redefines some
concepts, such as temperature and entropy. The definition of
entropy production has a new form in EIT, which remains
positive semidefinite in extreme conditions, such as heat
transport at high frequencies and short wavelengths. However,
the physical meanings of the modified generalzed forces have
not been clarified up to now.

The thermomass (TM) model [40–44] has been developed
in recent years to establish a general relation for heat conduc-
tion on the basis of first principles. Based on the Einstein
mass-energy equivalence relation, the TM model gives a
governing equation for heat conduction including nonlocal
and nonlinear effects, which are ascribed to the thermomass
inertia. This model is also useful for studying the unusual
transport phenomena in nanoscale systems [44]. Comparisons
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of the TM model with EIT and phonon hydrodynamics have
revealed the consistency between the constitutive equations
for heat transport in different theories [35,45,46]. The entropy
production for hyperbolic heat conduction based on the TM
model has also been derived and found to be analogous
with the EIT results [47]. In the present paper, the physical
essences of the forces and fluxes are further examined with the
assistance of TM theory to develop a general expression for
entropy production in irreversible transport processes, which
is applicable to both ordinary and fast transient conditions.

II. GENERALIZED ENTROPY PRODUCTION IN EIT

The entropy production for transport processes in CIT is

σ s = q · ∇
(

1

T

)
− 1

T
Pv : ∇uf −

N∑
k=1

J k · ∇
(

μk

T

)

+ 1

T
i · ∇ϕe, (2)

where q is the heat flux vector, T is the temperature, Pv is
the stress tensor, uf is the fluid velocity, Jk is the diffusion
flux, μk is the chemical potential, i is the current density, and
ϕe is the electrical potential. Equation (2) characterizes the
irreversibility induced by the transport of heat, momentum,
mass fraction, and charge and as the sum of products of flow
quantities (thermodynamic fluxes) and gradients of intensive
state variables (thermodynamic forces). This expression is
semipositive definite as long as the linear transport relations
hold:

q = −κ∇T (Fourier’s law for heat conduction), (3a)

J k = −
N∑

j=1

ρDkj∇cj (Fick’s law for mass diffusion), (3b)

i = − 1

re

∇ϕe (Ohm’s law for electrical conduction), (3c)

Pv = −2η∇uf (Newton’s law for viscous flow), (3d)

where κ is the thermal conductivity, η is the viscosity, D is the

diffusivity, ρ is the density, ck is the mass ratio defined by ρk/ρ,
and re is the electrical resistance. When they coexist, these
processes can cause cross effects, such as the thermoelectric
and thermal diffusion effect. In these cases the linear transport
relations become

q = Lqq∇(1/T ) −
N∑

k=1

Lqk∇(μk/T ) − Lqe∇(ϕe/T ), (4a)

Jk = Lkq∇(1/T ) −
N∑

j=1

Lkj∇(μj/T ) − Lke∇(ϕe/T ), (4b)

i = Leq∇(1/T ) −
N∑

k=1

Lek∇(μk/T ) − Lee∇(ϕe/T ), (4c)

where L are phenomenological coefficients that must be
symmetric according to Onsager’s reciprocal relations.

However, these linear laws have some inherent theoretical
problems. For example, in rigid bodies or fluids at rest, the

energy conservation relation

ρ
∂u

∂t
= −∇ · q (5)

combined with Fourier’s law of heat conduction leads to a
parabolic equation for the temperature evolution:

ρCV

∂T

∂t
= ∇ · (κ∇T ) , (6)

where u is the internal energy density and CV is the specific
heat. Although this equation is accurate enough for most
engineering applications, it predicts an infinite propagation
speed of the thermal perturbations and incorrect temperature
evolution for fast transient heating problems. The Cattaneo-
Vernotte model resolves this problem as [17–19]

τCV
∂q
∂t

+ q = −κ∇T , (7)

where τCV is the relaxation time in the CV model. The relax-
ation time is generally very small (∼10−12 s) for condensed
matter. However, this modification results in new problems,
since the deviation from linearity breaks the semipositive
definiteness of the classical entropy production,

σ s = κ∇T · ∇T

T 2
+ τCV

T 2

∂q
∂t

· ∇T . (8)

Equation (7) can be negative because of the second term on
the right-hand side, as has been verified numerically [13,28]
and seems to violate the second law of thermodynamics. EIT
theory assumes the heat flux q to be a new state variable, and
changes the entropy definition to

s = seq − 1

2

τCV

ρκT 2
q · q. (9)

Thus, EIT generalizes the entropy production for heat
conduction as [13,29]

σ s
EIT = 1

κT 2
q · q. (10)

This is always semipositive definite for heat waves as
shown in Fig. 1. The modified entropy production is exactly
the same as the classical expression of Eq. (2) if Fourier’s
law holds. For heat conduction in fluids, Müller and others
[21–31] choose the heat flux and the stress tensor as the
independent variables, with the transport process then agreeing
with the kinetic theory of gases from a derivation based on
Grad’s 13-moment distributions [21]. In this case the entropy
production is positive definite with a quadratic form of the heat
flux and stress tensor. The same analyses can be made for other
transport processes, with the generalized entropy production
in EIT to the lowest order of the flux becoming

σ s = 1

κT 2
q · q + 1

2ηT
Pv : Pv + 1

T

N∑
k=1

Jk · R

Mkρk

D−1 J k

+ 1

T
re i · i, (11)

where D is the diffusion matrix of Fick’s law in Eq. (3c), R is
the ideal gas constant, and Mk is the molecular mass of species
k. This expression is semipositive for short wavelengths
or high-frequency phenomena since it is quadratic. With a
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FIG. 1. The evolutions of the classical equilibrium entropy SCIT

and the extended entropy SEIT in an adiabatic system.

similar decomposition as in CIT, the thermodynamic forces
are no longer the gradient of the intensive state variables but
proportional to the flow quantities. Therefore, the thermody-
namic forces in EIT cannot be regarded as driving forces.
This difference has been discussed by Llebot and co-workers
[13,29] for the thermoelectric effect, with the definitions in EIT
shown to be closer to Onsager’s original proof of the reciprocal
relations. However, the decomposition and physical meaning
of thermodynamic forces and fluxes in the generalized entropy
production equation have not been clarified.

III. TM-MODEL-BASED GENERAL ENTROPY
PRODUCTION IN HEAT TRANSPORT

A. Thermomass model

According to Einstein’s mass-energy equivalence relation,
the thermal energy divided by the square of the vacuum light
speed is part of the “proper mass” of a system. That means “a
piece of iron weighs more when red hot than when cool”
[48,49]. From this point of view, the mass increase of
condensed matter, mh, due to thermal vibrations is

mh = mCV T

c2
, (12)

where m is the mass of a body,CV represents the specific heat
capacity at constant volume, and c is the speed of light in a
vacuum. Thus, the density of the thermomass, ρh, in units of
kg m−3 is

ρh = ρCV T

c2
. (13)

The drift velocity of the thermomass, uh, can be extracted
from the heat flux as

uh = q
ρCV T

. (14)

The governing equations of heat conduction have been
obtained by analogy with porous hydrodynamics as

∂ρh

∂t
+ ∇ · (ρhuh) = 0, (15)

ρh

∂uh

∂t
+ (ρhuh · ∇) uh + ∇ph = f h, (16)

where the first and second terms in Eq. (16) represent the inertia
effects, f h is the friction force, and ph is the thermomass
pressure. The thermal pressure can be derived from the Debye
state equation for dielectric solids as

ph = γρhCV T = γρ (CV T )2

c2
, (17)

where γ is the Grüneisen parameter. Substituting Eqs. (13) and
(14) in Eq. (15) gives the thermomass (energy) conservation
relation. Equation (16) represents the governing equation for
heat transport. For bulk materials, the heat conduction process
is analogous to fluid flow in porous media where the friction
force is proportional to the flow rate:

f h = −βρhuh. (18)

The momentum equation (16) reduces to Fourier’s conduc-
tion law for conditions with negligible thermomass inertia,
which means a balance between the driving and friction
forces,

∇ph = f h. (19)

Inserting Eq. (17) into Eq. (19) and comparing with
Fourier’s law gives the friction coefficient β as

β = 2γρC2
V T

κ
, (20)

where κ is the thermal conductivity. Thus, the general heat
conduction equation can be written as

τTM
∂q
∂t

+ 2l · ∂q
∂x

− bκ∇T + κ∇T + q = 0, (21)

with

τTM = κ

2γρC2
V T

, (22a)

l = qκ

2γCV (ρCV T )2 = uhτTM, (22b)

b = q2

2γρ2C3
V T 3

= Ma2
h, (22c)

where τTM is the lag time between the temperature gradient
and the heat flux, l is the characteristic length of heat
conduction [44], which is a measure of the spatial inertia
effects, where steady-state non-Fourier heat conduction occurs
and boundary slip should be considered, and Mah is the thermal
Mach number defined as the ratio of the drift velocity uh

to the thermal wave speed in the phonon gas uhs . The first
three terms on the left-hand side of Eq. (21) come from
the inertia effects. The fourth term represents the effect of
the pressure gradient (driving force) and the last term is
proportional to the resistance force. Equation (21) reduces
to the CV model when the second and third inertia terms are
neglected, which predicts the heat waves for fast transient
perturbation. The third inertia term implies that the effective
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thermal conductivity will decrease when the heat flux is very
high, which agrees with experimental results for nanotubes
and nanowires with slip boundary conditions [44]. Cimmelli
et al. [35] obtained a similar equation to Eq. (21) based on
the concept of a dynamical nonequilibrium temperature, with
the nonlocal effect obtained by a nonlinear solution of the
phonon Boltzmann equation which was consistent with the
phonon hydrodynamics theory [46]. Thermomass theory is
limited to conduction in rigid bodies at rest. When dealing
with heat conduction in fluids or moving media, more terms are
needed to describe the time derivative of the heat flux. Christov
and Jordan [50] proposed a material derivative to remove the
paradox in second-sound propagation in moving rigid media
in inertial frames. More generally, Müller and Ruggeri [21]
established the constitutive equations for heat and momentum
transfer in fluids in a noninertial frame using extended
thermodynamics and kinetic theory. They replaced the time
derivative of the heat flux by ∂qi/∂t + qk(∂vi/∂xk) − 2qkWik ,
where v is the fluid velocity and W is the angular velocity
matrix, which has two additional terms. The first additional
term qk(∂vi/∂xk) is from the requirement of objectivity, the
so-called Jaumann derivative. The second additional term
− 2qkWik can be rewritten as − 2c2(ρhuh)kWik using Eqs. (13)
and (14) and regarded as a Coriolis inertia term due to the
effects of the noninertial frame.

B. General expression for entropy production
during heat transport

The entropy production expression for heat transport can
be established based on the thermomass model. Aiming to
evaluate the dissipation in the system, in the thermomass
model the entropy production is expressed as a product of the
friction force and the velocity just like the viscous dissipation
in hydrodynamics [47],

σ s
TM = − 1

T
Fh · uh = 1

κT 2
q · q, (23)

with

Fh = −ρCV q
κ

= f h

/(
2γCV T

c2

)
= f h/ξ . (24)

The dimensionless coefficient ξ relating Fh to f h comes
from the ratio of the mechanical energy of the thermomass,
Eh, to the internal energy u,

ξ = dEh

du
= dph + ρhuhduh

du
. (25)

Eh consists of a potential part and a kinetic part. In ordinary
cases, the potential part corresponding to the internal energy
is dominant. The kinetic part is significant only in extreme
conditions such as high-frequency heating or very large heat
fluxes, when the temperature profile alone is not enough to
characterize the transport process. Equation (24) indicates that
Fh, with units of N m−3, is the dissipative force per unit
volume, i.e., the friction force per unit volume. Equation (23)
gives a semipositive definite expression that agrees with the
solid curve in Fig. 1.

In EIT, the generalized force in the expression of the
generalized entropy production is [13]

X = ∇θ−1 − τ

κθ2

∂q
∂t

, (26)

where θ is the nonequilibrium temperature, which reduces to
T when higher-order terms are negligible. If the relaxation
time τ is selected as Eq. (22a), the generalized force appears
as

−X = ∇T

T 2
+ 1

2γρC2T 3

∂q

∂t
= c2

2γρC2T 3

[
∇ph + ∂ (ρhuh)

∂t

]

= 1

ρCV T 2ξ
f h. (27)

Hence, the generalized force in EIT is actually the friction
force in the thermomass model. The first term on the right-hand
side of Eq. (26) represents the driving force, while the second
term is the inertia effect. If the partial differential operator
in Eq. (26) is replaced by the material time derivative [35],
Eq. (22) exactly reduces to Eq. (16).

In CIT, the thermodynamic forces in Eq. (2) are called
“driving forces,” which drive the fluxes [5,8]. From thermo-
mass theory, these forces are friction (dissipative) forces, with
the same units as body forces in continuum mechanics. Hence,
the inapplicability of the traditional expression of Eq. (2) in
extreme conditions is because the friction forces, rather than
the driving forces, determine the dissipation or irreversibility
of the transport processes.

IV. GENERAL EXPRESSION FOR THE ENTROPY
PRODUCTION IN OTHER TRANSPORT PROCESSES

A. Mass diffusion

For mass diffusion processes in chemically inert mixtures,
the mass conservation relation is

ρ
∂ck

∂t
= −∇ · J k. (28)

Here, the barycentric motion is omitted for systems enclosed
in reservoirs. Fick’s law states that at constant temperature and
pressure, Jk is proportional to the gradient of ck as in Eq. (3c).
In binary solutions or dilute systems, Dkj can be simplified to
Dk [51]. In CIT, the entropy production for mass diffusion of
an N -component system is [4]

σ s = −
N∑

k=1

Jk · ∇
(

μk

T

)
, (29)

where μk can be related to the mass ratio as [52]

μk = RT

Mk

ln αkck + const, (30)

with R the gas constant, Mk the molecular mass of species k,
and αk the activity coefficient of species k. For ideal solutions
such as isomer/isotopic mixtures and dilute systems, αk will
be almost unity and the entropy production can be written as

σ s = −
∑

k

J k · R

Mkck

∇ck, (31)

which is semipositive definite by Fick’s law.
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The diffusion flux Jk can give the velocity of component
uk by neglecting the barycentric motion of the system,

Jk = ρkuk. (32)

Substituting this into Eq. (33) gives

σ s = −
∑

k

ρkuk · R

Mkck

∇ck = −
∑

k

uk · R

Mk

∇ρk. (33)

For isothermal systems, this can be rewritten as

σ s = −
∑

k

1

T
uk · ∇ρkRT

Mk

= − 1

T

∑
k

uk · ∇pk, (34)

where pk is the partial pressure of the ideal gas or the vapor
pressure of the component in the solution. Hence, the classical
entropy production for mass diffusion can be defined as the
product of the driving forces (gradient of pk) and the diffusive
velocities of the components divided by T . The driving
forces are identical to external forces acting on the system
and a similar expression to Eq. (34) is given by Gallavotti
(see Eq. (5.11) in Ref. [53]) for calculating the microscopic
entropy production of a deterministic dynamic system.

The friction force for diffusion can be defined in the same
manner as in Eq. (19) in ordinary situations for dilute diffusion,
i.e., when balanced with the driving force,

f k = ∇pk = ρRT

Mk

∇ck, (35)

This equation is simply Fick’s law of mass diffusion; thus

f k = −ρk

RT

DkMk

uk = − pk

Dk

uk. (36)

This is quite similar to the friction force in the thermomass
model,

f h = −2γρ2C3
V T 2

κc2
uh = −2ph

ρCV

κ
uh. (37)

Note that Dk is defined by Eq. (3c) with the same units of m2/s
as has the thermal diffusivity κ/ρCV .

When combined with the conservation relation in Eq. (28),
Fick’s law gives a parabolic evolution equation for ck , just as
for heat conduction processes,

∂ck

∂t
= −Dk∇2ck, (38)

which implies the paradox of an infinite propagation speed
of concentration perturbations [21]. Within the framework
of rational thermodynamics [21–24], the momentum balance
equation for each constituent predicts that an acceleration term
should be added into Fick’s law under the assumption that each
constituent obeys the same balance law as a single fluid. In this
way, the time derivative of the diffusion flux corresponding to
the acceleration can be introduced into Fick’s law as in the CV
model [20–24],

τk

∂ Jk

∂t
+ Jk = −ρDk∇ck, (39)

where τk is the relaxation time. Inserting this relation into the
expression for the entropy production, Eq. (33), will make
the classical entropy production nonpositive definite. Hence,
the expression for the entropy production in CIT should be

modified. We have shown in Sec. III that the problem of
the traditional expression for the entropy production comes
from the incorrect selection of the generalized forces. There-
fore, the general entropy production should be defined based
on the friction force, rather than the driving force. The general
expression for the entropy production in an ideal solution is
then

σ s = − 1

T

N∑
k=1

uk · f k = 1

T

N∑
k=1

pk

Dk

uk · uk, (40)

which is quadratic and semipositive definite.
In practical multicomponent systems where the cross

effects should be taken into account, the driving force in
Eq. (34) cannot be expressed simply by the partial pressure
or vapor pressure and the friction force is related to all of the
fluxes. Equation (40) should then be reformulated as

σ s = − 1

T

N∑
k=1

uk · f k = 1

T

N∑
k=1

(
uk ·

N∑
j=1

�kj uj

)
, (41)

where the diffusion matrix � is symmetric and positive definite
according to the reciprocal relation.

B. Electrical conduction

For electrical conduction, the traditional expression is the
product of the electrical driving force (the gradient of electric
potential ϕe) and the flux (current density i ),

σS = − 1

T
i · ∇ϕe. (42)

The current density is related to the drift velocity of the
charge carriers

i = ρeue, (43)

where ρe is the charge density and ue is the drift velocity of
the charge carriers. Then, the friction force is balanced by the
driving force at steady state as

f e = ∇ϕeρe = −ireρe = −ρ2
e reue, (44)

where f e is the friction force per volume, which is proportional
to the drift velocity with unit of N/m3. Therefore, the entropy
production for electrical conduction is

σS = − 1

T
f e · ue = 1

T
ρ2

e reue · ue = 1

T
re i2. (45)

This agrees with Joule’s first law and is equivalent to the
original form in CIT if Ohm’s law holds. However, Havemann
et al. [54] pointed out that a nonlinear term derived from
the Boltzmann equation should be inserted into Ohm’s law
at low temperature, which is not surprising since Ohm’s law
neglects the time needed to accelerate the charge carriers. This
relaxation time under normal conditions is rather small because
the electrons are very light and the electrical force is quite
strong. A more obvious example is the ballistic transport inside
a cathode ray tube, where the inertia of electrons overwhelms
the friction effects, so Eq. (42) fails while Eq. (45) is still
applicable. This observation has also been obtained using the
EIT approach by introducing i as the independent variable into
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TABLE I. Comparison of the original and general expressions of entropy production.

Vectorial Tensorial

Irreversible processes Heat conduction Mass diffusion Electrical conduction Viscous flow

Originala σ s q · ∇ (
1
T

) −∑N

k=1 J k · ∇ (
μk

T

) − 1
T

i · ∇ϕe − 1
T

Pv:∇v

σ s = J · X J q J k i Pv

X ∇ (
1
T

) −∇ (
μk

T

) − 1
T
∇ϕe − 1

T
∇v

General σ s 1
κT 2 q · q 1

T

∑N

k=1

(
uk · ∑N

j=1 �kj uj

)
1
T
ρ2

e reue · ue − 1
T

1
2η

Pv : Pv

σ s = − u· f
T

u uh = q
ρCV T

uk = J k/ρk ue = i/ρe um = Pv ·uf

ρu2
f

f − (ρCV )2T

κ
uh −∑N

j=1 �kj uj −ρ2
e reue

ρu2
f

η/ρ
um

aWe just show the most common decomposition of forces and fluxes among different approaches.

the Gibbs equation, with results closer to Onsager’s proof of
the reciprocal relations [13,29].

C. Momentum transport

For momentum transport, the entropy production in CIT is

σS = − 1

T
Pv:∇uf . (46)

This expression is based on mechanical laws, but is slightly
different from Eqs. (23), (41), and (45), since the retarding
forces have units of N/m2 and are proportional to the
relative velocities (velocity gradients) rather than the absolute
velocities. However, Newton’s viscosity law breaks down for
rheological fluids [25–27], where it should be replaced with
the relaxational Maxwell model

τ�Pv + Pv = 2η∇uf , (47)

where τ is the relaxation time, � is the objective time
derivative, and η is the viscosity. In this case, Eq. (46) is
not positive semidefinite and fails to characterize the actual
dissipation. In analogy to the analyses for the other transport
processes, Pv can be regarded as a momentum flux and
proportional to the friction force, while ∇uf corresponds to
the driving force. Therefore, the entropy production should be
modified in a similar way as

σS = − 1

T

1

2η
Pv : Pv, (48)

which has a similar form as in EIT (see Eq. (15.54) in
Ref. [13]).

The drift velocity is found from the shear flow without vol-
ume variations, where the kinetic energy is simply dissipated
into heat rather than converted into other types of mechanical
energy. The drift velocity can be defined as

um = Pv · uf

ρu2
f

, (49)

where um is the momentum transport velocity. Equation (49)
is analogous to Eq. (14) since the numerator represents the
flux of shear work and the denominator represents the energy
density. Actually um is the drift velocity of kinetic energy and
can characterize the drift velocity of momentum in this special

case. The friction force f m is proportional to the drift velocity
as

f m = Pv · ρuf

η
= (ρuf )2

η
um = ρu2

f

η/ρ
um. (50)

Equation (50) is consistent with Eqs. (33) and (34), where μ/ρ

is the transport coefficient with unit of m2/s, ρu2
f corresponds

to p1 and ph as the energy density. Of course, for more
general flow conditions, the momentum transport changes
the static pressure energy or the gravitational energy, so the
momentum drift velocity cannot be as easily defined as in
Eq. (49).

The original and general expressions for entropy production
for transport processes are summarized in Table I. The general
entropy production for irreversible processes is the product
of the friction forces, rather than driving forces in classical
theories, and the drift velocities divided by the temperature.
The general entropy production is applicable not only to
normal conditions but also to extreme conditions, such as
fast transient perturbation and superhigh fluxes in nanoscale
systems. The general expression reduces to the original form
for ordinary conditions.

V. CONCLUSIONS

(a) The momentum balance equation (16) for heat con-
duction based on the thermomass model is the balance
of the driving force, inertia force, and resistance force.
The balance between the driving force and resistance force
corresponds to the Fourier law of heat conduction. Since
entropy production arises from the irreversibility of transport
processes, the entropy production should be the product of
the friction force, rather than the driving force, and the
velocity divided by the temperature. This general definition
of entropy production is applicable not only to Fourier heat
conduction but also to non-Fourier phenomena, such as heat
waves and nanoscale heat conduction with extremely high heat
fluxes.

(b) The analyses based on the themomass theory can be
extended to other transport processes, such as mass diffusion,
electrical conduction, and momentum transport processes.
The physical essence of the linear transport relations is the
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balance between the driving forces and the friction forces
with the inertia forces ignored. The general expression for the
entropy production for irreversible processes is the product
of the friction forces and the drift velocities divided by the
temperature. The decomposition of the forces and fluxes
is no longer arbitrary with this physical identification. The
general expression is especially useful for nonlinear transport
processes (e.g., heat waves, anomalous diffusion) induced
by inertia effects where the classical expressions are not
semipositive definite.

(c) The general expression for the entropy production
based on thermomass theory agrees well with that based
on EIT, although from different theoretical frameworks.
EIT characterizes irreversible systems with additional flux

variables, i.e., the drift velocities multiplied by the density of
the extensive properties. This is reasonable since the velocities
are actually independent variables in dynamic systems. The
thermomass model, however, takes the inertia force into
account in the conservation equation. The consistency of
both theories will deepen the understanding of irreversible
thermodynamics.
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