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a b s t r a c t

The damping levels of the temperature and heat flux ( 3T, 3q) and the damping factor (x) were defined for
evaluating and determining the damping of the thermal waves predicted by the CattaneoeVernotte (CV),
dual-phase-lagging (DPL), and thermomass (TM) models. Numerical analyses were performed in terms of
the three models. The damping level of the heat flux, instead of the temperature, is found to be a better
evaluation factor because the heat flux is directly related to the energy transported by the thermal wave
while the temperature can be also affected by the thermal properties. The damping factor x ðL= ffiffiffiffiffi

as
p Þ

represents the ratio of the time that the thermal wave needs to travel the distance L to the relaxation
time, or

ffiffiffi
3

p
times of the reciprocal of the Knudsen number, where L is the travelling distance of the

thermal wave, a is the thermal diffusivity, and s is the relaxation time. For the sharp thermal waves
predicted by the CV and simplified TM models, the damping factors xCV and xTM can be the characteristic
numbers that has a decisive impact on the damping level of the heat flux. But if both including the sharp
and blunt thermal waves, the increase of overdamped cases under the blunt thermal wave situation will
lead to the deviation for the characteristic numbers. For the sharp thermal waves predicted by the DPL
and TM models, the damping factors xDPL and xTM cannot be the characteristic numbers, which is due to
the impacts on the propagation speed of the thermal wave and its heat diffusion caused by the inertia
term of the temperature gradient to time for the DPL model, and the inertia term of the temperature to
time and nonlocal terms for the TM model, respectively. For the thermal waves predicted by the CV and
simplified TM models, their propagation processes satisfy the exponential damping relationship in most
situations, with the deviation occurring only when the overdamped cases play a major role and the
thermal waves stay at the primary stage. Besides, the sharp and blunt thermal waves predict different
slopes of �ln(1 � 3q) to the damping factor x. If the thermal wave is sharper, the overdamped cases are
fewer, and therefore the corresponding slope of �ln(1 � 3q) to x is closer to 0.5. The studies are expected
to help not only understand the thermal wave behaviours but also carry out experimental investigations
and engineering evaluations.

� 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Heat conduction in solids is ordinarily considered as a diffusion
phenomenon, which is generally described by the Fourier’s law [1].
This is acceptable for normal engineering applications, but the non-
physical infinite heat propagation speed assumption in the Fouri-
er’s law usually leads to its failure in situations such as high-power
perturbation under short duration [2e4], ultralow temperature
conditions [5,6], micro scale conditions [7e9], and biological tis-
sues [10,11]. To remove this limitation, inertia of the heat flux,
temperature and temperature gradient to time and nonlocal effects
were introduced to modify the Fourier’s law for achieving the heat
.

erved.
propagationwith finite speed [12e14], which further results in that
the classical diffusive heat conduction process turns into a wave or
ballistic phenomenon [15e18]. Several models have been pro-
nounced for consideration of the non-Fourier effects [19,20], in
which the typical ones are CattaneoeVernotte (CV) [21,22], dual-
phase-lagging (DPL) [23e25], GuyereKrumhansl (GK) [26,27],
and thermomass (TM) models [28,29]. These models are, respec-
tively, shown as follows:

qþ sq
vq
vt

¼ �kVT ; (1)

qþ sq
vq
vt

¼ �k
�
VT þ sT

v

vt
ðVTÞ

�
; (2)
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Nomenclature

A wavelet’s amplitude
C arbitrary constants
Cv specific heat, J/kg K
d thickness, m
F vector defined in Eq. (11)
i imaginary number
k thermal conductivity, W/m K
Kn Knudsen number
l mean free path, m
L travelling distance, m
n wave number, 1/m
q heat flux, W/m2

S vector defined in Eq. (11)
t time, s
T temperature, K
DT temperature, K
U vector defined in Eq. (11)
W vector defined in Eq. (13)
x position, m
Z dimensionless relaxation time

Greek symbols
a thermal diffusivity, k/r Cv, m2/s
g Grüneisen constant
r density, kg/m3

x damping factor
z damping ratio

s relaxation time, s
l wavelength, m
lj eigenvalue, j ¼ 1, 2
3 damping level
v propagation speed, m/s
u natural angular velocity, rad/s

Superscript
* dimensionless parameter
q heat flux
T temperature

Subscript
0 initial temperature
CV CattaneoeVernotte
DPL dual-phase-lagging
f frontier
f0 reference frontier
g phonon gas
N normal process
p peak
p0 peak corresponding to the reference frontier
q heat flux
R Umklapp process
T temperature
TM thermomass
TM0 thermomass at initial temperature
v volume
w thermal wave
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qþ sR
vq
vt

¼ �v2gsRCv
3

VT þ sRsNv2g
5

h
V2qþ 2VðV$qÞ

i
; (3)
qþ sTM
vq
vt

� sTM
q
T
vT
vt

þ sTM
q

rCvT
V$q� sTM

q
rCvT

$
q
T
VT ¼ �kVT :

(4)

In Eqs. (1)e(4), q is the heat flux, T is the temperature, t is the
time, k is the thermal conductivity, r is the mass density, and Cv is
the heat capacity at constant volume. The relaxation time of heat
flux sq in the CV and DPL models are both based on the consider-
ation of phonon collisions and defined as the ratio of the mean free
path (l) of phonons to their group speed (vg) [30]. The relaxation
time of the temperature gradient sT in the DPL model is based on
the consideration of the micro-structural interactions [31]. The
relaxation times sR and sN in the GK model describe the Umklapp
(momentum non-conserving) and normal (momentum
conserving) processes in the phonon interactions [32], and the term
sRsNv2g

5 ½V2qþ 2VðV$qÞ� is due to the second-order nonlocal effect. The
characteristic time sTM in the TMmodel is k=ð2grC2

vTÞ [18], where g
is the Grüneisen constant. The different expression of the charac-
teristic time in the TMmodel is because thismodel is established by
accommodating the equivalent mass of phonon gas calculated from
the Einstein masseenergy equation and using the mass and mo-
mentum conservation equations for the weighty and compressible
phonon gas.

The CV model can be reduced to the Fourier’s law when sq is
negligible, or the thermal perturbation is weak. If we neglect the
inertia term of the temperature and temperature gradient to time
and nonlocal effects, the DPL, GK, and TM model can all turn into
the CV model. However, these models may predict different heat
propagation behaviours. The heat propagation process predicted by
the DPLmodel is determined by the relative sizes between sq and sT,
and this model actually includes four heat propagation modes:
wavy mode (sT ¼ 0), wavelike mode (0 < sT < sq), diffusion mode
(sT¼ sq), and over-diffusionmode (sT> sq) [33]. Due to the nonlocal
effect, the resulting thermal wave predicted by the GK model
propagates faster than that predicted by the CV model and the
temperature level in the affected region is much higher [32]. For the
TM model, it agrees well with the CV model when the thermal
perturbation and heat flux are sufficiently weak [34]. But for the
large thermal perturbation, the CV model may predict unphysical
negative temperature when two cooling thermal waves superpose,
and this limitation could be overcome by the TM model [34,35].

From the CV, DPL, GK, and TM models, it can be seen that these
models all include the diffusion (q) and wave (s(vq/vt)) terms,
where s are sq, sq, sR, sTM, respectively. So, due to the effect of the
heat diffusion, the energy transported by the thermal waves pre-
dicted by these models will reduce gradually, which further gives
rise to the damping of the thermal perturbations. Tang and Araki
[36] studied the wavy, wavelike, and diffusive thermal responses,
predicted by the DPLmodel, in finite rigid slabs under pulse surface
heating and obtained analytical temperature distributions using
the Green’s function method. The results showed that for wavy
mode, namely the CV model, increasing the propagation process
only leads to the damping of the temperature amplitude while not
any change in the wide of the portion of the thermal wave, but for
the wavelike mode, the propagation will lead to both the damping
of the temperature amplitude and the dissipation of the portion of
the thermal wave. As for the damping of the temperature wave
predicted by the CV model, Ramadan [37] declared that the reason
is the damping effect of the heat diffusion. Jou et al. [38] further
pointed out that for the CV model, if neglecting the diffusion term,
the temperature wave will not change during its propagation
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process; but if retaining the diffusion term, the temperature
amplitude will decrease gradually. For the GK and TMmodels, Tzou
[32] and Lam [39] also reported respectively that the temperature
amplitude reduced with the temperature wave moving forward.

Although the damping of the thermal waves predicted by the
CV, DPL, GK, and TM models has been confirmed by many re-
searchers, quantitative studies on this topic remain seldom thus far.
Moreover, Lor and Chu [40] found that the temperature and heat
flux waves both appear in this process, but until now, there is no
report giving out that the damping of which one can reflect the
damping behaviour better. In a sum, for the damping of the thermal
waves, the key problem is the lack of specific factors that can
determine and evaluate this process and the corresponding theo-
retical analysis for these factors. Undoubtedly, these factors are
particularly important to the experimental investigations on the
non-Fourier effect because we can predict the amplitude of the
thermal perturbation in advance. So, studies on the damping of
thermal waves can not only help us understand this process better,
but also help us carry out experimental investigations and engi-
neering evaluations.

In this paper, we proposed the damping factor and damping
levels of the temperature and heat flux for studying the damping of
the thermal waves, which will be shown in Section 3. The verified
numerical methods were adopted to test the effectiveness of these
numbers. Further, considering the similarity between the damping
of the thermal waves and damped oscillations, we carried out
theoretical studies on this process using the damped vibration
theory and gave out the limitation of these numbers.
2. Numerical method and its validation

To study the damping of the thermal waves quantitatively, we
consider a one-dimensional heat conduction problem in a finite
rigid slab under surface heat flux pulse heating. Since the DPL
model is similar to the GK model for the one-dimensional problem
[19], we only discuss the damping of the thermal waves predicted
by the CV, DPL, and TM models. The one-dimensional CV, DPL and
TM models are, respectively, shown as below:

qþ sq
vq
vt

¼ �k
vT
vx

; (5)

qþ sq
vq
vt

¼ �k

 
vT
vx

þ sT
v2T
vxvt

!
; (6)

qþ sTM
vq
vt

� sTM
q
T
vT
vt

þ sTM
q

rCvT
vq
vx

� sTM
q

rCvT
$
q
T
vT
vx

¼ �k
vT
vx

: (7)

To obtain the temperature and heat flux distributions predicted
by these models, we also need the energy conservation equation,
given as follows:

rCv
vT
vt

þ vq
vx

¼ 0: (8)

Considering the analytical solutions only apply to the simple
initial boundary conditions, the high-order purely numerical
explicit total-variation-diminishing (TVD) scheme with Roe’s
superbee limiter functionwas adopted in this paper. This numerical
method was first established by Yang [41]. Shen and Zhang used it
for calculating the temperature and heat flux distributions pre-
dicted by the CV and DPL models and its effectiveness for this was
confirmed [42]. The numerical method used in this paper is the
same with that used by Shen and Zhang [42] with the only differ-
ence of the normalization method of the temperature. The
numerical diffusion exists in the sharp temperature and heat flux
edges when using this numerical method [41]. But to make the
effects of the numerical diffusion can be neglected and ensure the
independence of the calculated grids, enough uniform calculated
grids are chosen in this paper. We use the DPL model for intro-
duction of the TVD scheme. This is because the CV model can use
this scheme by setting sT in the DPL model as 0 and the TM model
can use this scheme through replacing the term sT(v2T/vxvt) in the
DPL model by the inertia term of the temperature to time and
nonlocal terms of the temperature and heat flux in the TM model.
Before presenting the TVD scheme for the DPL model, we should
define the dimensionless position x*, time t*, temperature T*, heat
flux q*, characteristic times Zq and ZT, which are, respectively,
shown as follows:

x* ¼ x=d; t* ¼ t
.�

d2
.
a
�
; T* ¼ T=T0; q* ¼ q=ðkT0=dÞ;

Zq ¼ sq
.�

d2
.
a
�
; ZT ¼ sT

.�
d2
.
a
�
;

(9)

where d is the thickness of the slab and a is its thermal diffusivity,
defined as k/(rCv).

Then, using the normalization method defined in Eq. (9), the
DPL model in Eq. (6) and energy conservation equation in Eq. (8)
can be transformed into the dimensionless vector form as:

vU
vt*

þ vF
vx*

¼ S; (10)

with the vectors defined as:

U ¼
�
Zqq*

T*

�
; F ¼

�
T*

q*

�
; S ¼

2
64�q* � ZT

v2T*

vx*vt*

0

3
75: (11)

Further, following the steps of diagonalization based on
eigenvalue presented in [41], we can rewrite the dimensionless
vector equation in Eq. (10) into two separately independent
equations:

vWj

vt*
þ lj

vWj

vx*
¼ Sj; j ¼ 1;2; (12)

where

�
W1

W2

�
¼

2
6664
1
2

�
T* þ

ffiffiffiffiffi
Zq

q
q*
�

1
2

�
T* þ

ffiffiffiffiffi
Zq

q
q*
�
3
7775;

�
l1
l2

�
¼

2
66664

1ffiffiffiffiffi
Zq

p
� 1ffiffiffiffiffi

Zq
p

3
77775;

�
S1
S2

�
¼

2
6666664
� 1
2

ffiffiffiffiffi
Zq

p
 
q* þ ZT

v2T*

vx*vt*

!

1
2

ffiffiffiffiffi
Zq

p
 
q* þ ZT

v2T*

vx*vt*

!

3
7777775
:

(13)

Eventually, the equations in Eq. (12) can be readily solved by the
TVD scheme with the Roe’s superbee limiter function, the detail of
which can be acquired in Ref. [41].

After establishing the TVD scheme for obtaining the tem-
perature and heat flux distributions, we should testify its
effectiveness. The one-dimensional heat conduction problem
such as one thin slab under surface heat flux heating reported
by Shen and Zhang [42] was taken for the validation of the
numerical method used in this paper. Here, the thin slab is finite
in the x-direction while infinite in the y- and z-directions. The



Fig. 1. Schematic diagram for a one-dimensional heat conduction problem under
surface heat flux pulse heating.
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corresponding schematic diagram for this problem is shown
in Fig. 1 with the initial boundary conditions defined in Eqs.
(14)e(16).

T* ¼ 1 and q* ¼ 0 at t* ¼ 0; (14)

q* ¼ 2 at x* ¼ 0; t* < 0:05 and q* ¼ 0 at x* ¼ 0; t* � 0:05;
(15)

q* ¼ 0 at x* ¼ 1; t* > 0: (16)

Fig. 2 presents the comparisons between the spatial dimen-
sionless temperature and heat flux distributions at t* ¼ 0.4 pre-
dicted by the CV and DPL models in our work and the numerical
solutions in Ref. [42]. From Fig. 2, it can be easily seen that for
both the CV and DPL models, the predicted numerical solutions
in our work agree well with those in Ref. [42]. Since we can
rewrite the formulation of the TM model to adjust the TVD
scheme established for the DPL model, this scheme can also be
effective for calculating the temperature and heat flux distribu-
tions predicted by the TM model. So, after the validation, it can
be concluded that the numerical method established in this pa-
per can be used for the studies on the damping of the thermal
waves.
3. Physical problem

When studying the damping of the thermal waves predicted by
the CV, DPL and TM models, we reconsider the one-dimensional
heat conduction problem in Fig. 1 with the initial boundary con-
ditions defined in Eqs. (14)e(16), but in which we replaced the
constant heat flux pulse in Eq. (15) by a cosine heat flux pulse,
taking the form as:
Fig. 2. Comparisons between the spatial dimensionless temperature and heat flux distribu
solutions in Ref. [42].
q ¼ ½1� cosð2pt=0:05Þ� at x ¼ 0; t < 0:05 and q ¼ 0
at x ¼ 0; t � 0:05;

(17)

which is also normalized using the method defined in Eq. (9). Be-
sides, we define a series of base conditions for the CV, DPL, and TM
models, as shown in Table 1. Here, x*f0 represents the dimensionless
reference frontier position of the temperature and heat flux wave,
and L represents the travelling distance of the temperature and
heat fluxwave. The reasonwhywe let reference frontier position be
near a specific position is that it is hard to determine the speed of
the thermal waves predicted by the DPL and TM models, and more
importantly, the different choices of x*f0 will not affect the conclu-
sions in this paper.

To understand the damping of the thermal waves better, we take
the CV model under base condition CV-1 for example and obtain
the propagation processes of the temperature and heat flux wave
using the TVD scheme established above. The spatial dimensionless
temperature and heat flux distributions at different dimensionless
wave frontier positions x*f predicted by the CV model are shown in
Fig. 3. From Fig. 3, we can know that for the CV model, the heat
propagation process is indeed in a wave mode with the tempera-
ture and heat flux of some inner regions exceeding those at the
boundary. With the temperature and heat flux waves moving for-
ward, their amplitudes both decrease continuously due to the heat
diffusion. Although the thermal perturbation is strong when
x*f ¼ 0:1; it becomes quite weak when x*f ¼ 0:9: The strong heat
diffusion can result in such significant attenuation of the signals of
the temperature and heat flux waves that we cannot capture them
after travelling quite long distances.

It should be mentioned that the dimensionless temperature and
heat flux distributions could be greatly affected by the boundary
conditions. In Fig. 1, we adopted the boundary conditions: first heat
flux pulse heating and then adiabatic are imposed at x* ¼ 0 and
always adiabatic at x* ¼ 1. The corresponding dimensionless tem-
perature and heat flux distributions are shown in Fig. 3. The
dimensionless temperature and heat flux distributions both have
peak values with the sharp wavefront and wavebehind. But, if
significantly increasing the heat pulse duration, the peak values
will weaken and even may not appear due to slower time variation
of the heat flux. If greatly decreasing the relaxation time sq in the
CV model, the peak values may also be not observed at the
computing instants of time in this paper due to the stronger
damping of the thermal waves discussed in Section 4.1. Besides, the
propagation process of the thermal waves can also be affected by
the boundary condition on the right hand, which can affect the
tions at t* ¼ 0.4 predicted by the CV and DPL models in this work and the numerical



Table 1
Base conditions for the CV, DPL, and TM models.

k r Cv T0 d sq sT g x*f0 L

CV-1 0.1 1.0 1.0 1.0 1.0 0.2 e e 0.2 0.7d
DPL-1 0.1 1.0 1.0 1.0 1.0 0.2 0.002 e Near 0.2 0.7d
TM-1 1.0 20.0 1.0 1.0 1.0 e e 0.1 0.2 0.7d
TM-2 1.0 20.0 1.0 1.0 1.0 e e 0.1 Near 0.2 0.7d
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reflection of the temperature and heat flux waves. When using the
constant temperature boundary condition on the right hand
instead of the adiabatic right boundary condition, the temperature
and heat flux waves after reflected by the right side are exactly that
the temperature and heat flux waves turn upside down at the same
instant of timewhen using the adiabatic boundary condition on the
right hand [42]. If using the temperature pulse boundary condition,
such as making the temperature at x* ¼ 0 having a sudden increase
and then keeping this temperature [14], the thermal waves can only
have sharp wavefront and does not have sharp wavebehind.
Although the boundary condition can affect the temperature and
heat flux waves, the damping of the thermal waves always exists in
their propagation processes. To facilitate our quantitative study, we
adopt the boundary conditions: first heat flux pulse and then
adiabatic are imposed at x* ¼ 0 while always adiabatic at x* ¼ 1, as
shown in Eq. (17).

For quantitative studies on the damping of thermal waves, it is
quite necessary to define specific factors that can evaluate and
determine this process. Since it is relatively easier to find factors
used for evaluating the damping of the thermal waves, we first
define the damping levels of the temperature and heat flux waves
for evaluation, given as below:

3T ¼
T
�
xTp0
�
� T

�
xTp0 þ L

�
T
�
xTp0
� ; (18)

3q ¼
q
�
xqp0
�
� q
�
xqp0 þ L

�
q
�
xqp0
� : (19)

Here, 3T and 3q are the damping levels of the temperature and heat
flux wave, respectively. xTp0 and xqp0 are the positions of the tem-

perature and heat flux peaks when the dimensionless frontier po-
sitions of the temperature and heat flux waves both reach the
dimensionless reference position x*f0; respectively. T(x) and q(x) are
the temperature and heat flux at the position x, respectively, in
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0
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0.4

0.3

0.2

,erutarep
met

sselnoisne
mi

D
T

*

Dimensionless position, x*

x
f

*=0.1

(a) (

Fig. 3. The spatial dimensionless temperature and heat flux distributions at di
which x can be xTp0; xqp0; ðxTp0 þ LÞ; ðxqp0 þ LÞ: So, TðxTp0Þ and qðxqp0Þ
are actually the amplitudes of the temperature and heat flux waves
when their frontier positions reach x*f0; respectively. TðxTp0 þ LÞ and
xqp0 þ L are the amplitudes of the temperature and heat flux waves

after their peaks travelling the distance L relative to xTp0 and xqp0;

respectively.
After defining the damping levels of the temperature and heat

flux waves, we need to find a specific factor that can determine the
damping of the thermal waves. This factor is better to serve as a
characteristic number, which has decisive impact on this process.
For this, we got an idea from the dimensionless relaxation time
Zq ¼ sq/(d2/a) and proposed a new dimensionless factor

x ¼ L
� ffiffiffiffiffi

as
p

; (20)

where s is sq for the CV and DPLmodels, or sTM for the TMmodel. As
x is directly used for determining the damping of the thermal
waves, we can call it the damping factor. Why we chose the
damping factor x for controlling the damping process comes from
two considerations. Taking the CV model for example, one
consideration is that we can substitute vw ¼ ffiffiffiffiffiffiffiffi

a=s
p

; where vw is the
speed of the thermal wave predicted by the CV model, into Eq. (20)
and reformulate x as

x ¼ L
vws

: (21)

As we know, increasing the travelling distance L, decreasing the
wave speed vw, or decreasing the relaxation time s means that the
thermal wave needs more time to travel the distance L at the wave
speed vw, or the impact of the wave term relative to the heat
diffusion term decreases. These changes all can lead to the increase
of the damping extent of the energy transported by the thermal
wave and at the same time, they also leads to the increase of the
damping factor x. So, no matter which change leads to the increase
of x, if x increases, the damping extent of the energy transported by
the thermal wave increases, and vice versa. The other consideration
is that we can substitute

a ¼ k
rCv

¼ rCvvgl
�
3

rCv
¼ vgl

3
; (22)

where l is themean free path of phonons and vg is their group speed
[43], into Eq. (20) and rewrite x as

x ¼
ffiffiffi
3

p
Lffiffiffiffiffiffiffiffi

vgsl
p : (23)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2

4

6

8

10

12

14

16

18

0.90.80.7
0.6

0.5
0.4

0.3

0.2

x
f

*=0.1,xulftaeh
ssel noisne

mi
D

q*

Dimensionless position, x*

b)

fferent dimensionless wave frontier positions predicted by the CV model.
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Considering vgs ¼ l and l/L ¼ Kn, where Kn is the Knudsen
number, we can reformulate Eq. (23) as

x ¼
ffiffiffi
3

p

Kn
: (24)

The decrease of Kn means stronger collisions between/among
phonons, namely stronger heat diffusion and quicker damping of
the energy transported by the thermal wave. So, from the view of
Kn, we can also know if the damping factor x increases, the damping
extent of the energy transported by the thermal wave increases,
and vice versa. From the above two considerations, we determine
the expression of the damping factor x. For the wavelike mode of
the DPL model considered in this paper, the introduction of sT leads
to faster heat propagation speed and stronger heat diffusion. But it
is hard to determine the effects of sT on the damping of the thermal
waves quantitatively now, and therefore we do not consider the
effects of sT here and still use L=

ffiffiffiffiffiffiffiffi
asq

p
as the damping factor for the

DPL model. For the TMmodel, it is also hard to predict the effects of
the inertia term of the temperature to time and nonlocal effects on
the damping of the thermal waves quantitatively now, and thus we
adopt the same strategy for the DPL model and use L=

ffiffiffiffiffiffiffiffiffiffiffi
asTM

p
as the

damping factor for the TM model.
In summary, the damping levels of the temperature and heat

flux 3T and 3q defined in Eqs. (18) and (19) are used for evaluating of
the damping extent of the thermal waves while the damping fac-
tors defined for the thermal waves predicted by the CV, DPL, and
TM models are used for determining their damping extent. The
thermal properties of the slab and travelling distances of the
thermal waves can all affect the damping factors. But, the damping
levels of the temperature and heat flux are defined directly from
the peak signals of the temperature and heat flux waves. The
damping factors can be used for predicting the damping extent of
the thermal waves, but the damping levels are only the indictors
which are used for evaluating their damping extent.

4. Results and discussion

4.1. CV model

Using the base condition CV-1, we obtained the effects of the
damping factor xCV ðL= ffiffiffiffiffiffiffiffi

asq
p Þ on the damping levels of the temper-

ature and heat flux predicted by the CV model, as shown in Fig. 4.
Here, the damping factors are varied due to the changes of L, sq, k, r
and Cv, respectively. Besides, if one of L, sq, k, r and Cv changes, we
assume the others do not change. From Fig. 4, it can be seen that
effects of the damping factor xCV due to the changes of L, sq, k, r and
Cv separately on the damping level of the heat flux 3q predicted by
the CV model overlap together while those on the damping level of
the temperature 3T do not. This is because the heat flux is directly
related to the energy transported by the thermal wave, but the
temperature also can be affected by the thermal properties of the
slab. For the damping level of the heat flux, no matter how L, sq, k, r
or Cv changes, if the damping factor xCV increases, more energy
transported by the thermalwave is diffused. Therefore, the damping
level of the heat flux predicted by the CV model increases with the
damping factor xCV increasing. But for the damping level of the
temperature, the increase of the damping factor xCV may be caused
by the increase of L, r and Cv, the decrease of sq and k, or their
combined impacts. If considering T ¼ T0 þ DT, the damping level of
the temperature 3T in Eq. (18) can be reformulated into

3T ¼
DT
�
xTp0
�
� DT

�
xTp0 þ L

�
T0 þ DT

�
xTp0
� : (25)
Further, Eq. (25) can rewritten as

3T ¼
0
@1� T0

T0 þ DT
�
xTp0
�
1
A DT

�
xTp0
�
� DT

�
xTp0 þ L

�
DT
�
xTp0
� : (26)

As the local temperature increase is in direct proportion to the
local heat flux, the damping level of the temperature 3T obey the
relationship:

3Tf

0
@1� T0

T0 þ DT
�
xTp0
�
1
A q

�
xqp0
�
� q
�
xqp0 þ L

�
q
�
xqp0
� ; (27)

which also can be reformulated into

3Tf

0
@1� 1

1þ DT*
�
xTp0
�
1
A 3q; (28)

where DT*ðxTp0Þ ¼ DTðxTp0Þ=T0: The increase of L, r and Cv and the
decrease of sq and k all can lead to the increase of 3q, but the in-
crease of L does not change DT*ðxTp0Þ; the increase of r and Cv and
the decrease of sq result in the decrease of DT*ðxTp0Þ while the
decrease of k results in the increase of DT*ðxTp0Þ: So, from Eq. (28),
we can know if the damping factor xCV increases due to the increase
of L or the decrease of k, the damping level of temperature pre-
dicted by the CV model always increases. But if the damping factor
increases due to the increase of r and Cv and the decrease of sq,
(1 � (1/(1 þ DT*(xp0T )))) increases while 3q decreases. When the
damping factor is relatively small, the impact of (1 � (1/
(1 þ DT*(xp0T )))) is stronger than that of 3q, and therefore the
damping level of the temperature increases first. But when the
damping factor increases to a specific value, the impact of 3q begin
to take a major role, and then the damping level of the temperature
decreases. Besides, we can find that effects of the damping factor
due the changes of r and Cv on the damping level of the tempera-
ture overlap together, which is due to the impact of r and Cv on the
temperature increase is same.

After the above discussion, we can know for evaluating the
damping of the thermal wave predicted by the CV model, the
damping level of the heat flux 3q is a better factor than that of the
temperature. Under the base condition CV-1, effects of the damping
factor due to the changes of L, sq, k, r and Cv separately on the
damping level of the heat flux overlap together show that the
damping factor xCV can be a characteristic number for determining
the damping of the thermal wave predicted by the CV model. Be-
sides, it should be particularly mentioned that the above conclu-
sions also hold if the reference positions xTp0 and xqp0 change.
4.2. DPL model

Using the base condition DPL-1, we obtained the effects of the
damping factor xDPL ðL= ffiffiffiffiffiffiffiffi

asq
p Þ on the damping levels of the tem-

perature and heat flux predicted by the DPL model, as shown in
Fig. 5. Here, the damping factors are varied due to the changes of L,
sq, k, r and Cv, respectively. Besides, if one of L, sq, k, r and Cv
changes, we also assume the others do not change. The only dif-
ference between the base conditions CV-1 and DPL-1 is the relax-
ation time sT. If neglecting the relaxation time sT, the DPLmodel will
turn into the CV model, and corresponding effects of the damping
factor xDPL due to the changes of L, sq, k, r or Cv on the damping level
of the heat flux will overlap together. But from Fig. 5, we can find
that the effects of the damping factor xDPL due to the changes of L,
sq, k, r and Cv separately on the damping level of the heat flux



Fig. 4. Effects of the damping factor xCV on the damping levels of the (a) temperature and (b) heat flux predicted by the CV model, in which the damping factors are varied due to the
changes of L, sq, k, r and Cv, respectively.
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predicted by the DPL model do not overlap together. This is due to
the impact of the relaxation time sT, which increases both the speed
of the thermal wave and heat diffusion. This further results in that
the damping factor xDPL cannot be a characteristic number for the
DPLmodel, especially when xDPL is relatively small, namely the heat
diffusion is weak. When xDPL is quite large, the common strong heat
diffusion under these conditions makes that effects of the damping
factor on the damping level of the heat flux overlap together. Be-
sides, the variation trends of the damping levels of temperature and
heat flux predicted by the DPL model with the damping factor xDPL
are same with those predicted by the CV model. The increase of the
damping factor xDPL due to the increase of L or the decrease of k lead
to the increase of the damping level of the temperature, but that
due to the increase of r and Cv, or the decrease of sq will lead to the
first increase and then decrease of the damping level of the heat
flux. The increase of the damping factor xDPL due to these changes
all result in the increase of the damping level of the heat flux
predicted by the DPL model.

So, for the damping of the thermal wave predicted by the DPL
model, the damping level of the heat flux 3q is a better factor than
that of the temperature. This is same with that of the CV model
because the heat flux is directly related to the energy transported
by the thermal wave while the temperature can also be affected by
the thermal properties. But, as the damping factor xDPL ðL= ffiffiffiffiffiffiffiffi

asq
p Þ

does not consider the impacts of the relaxation time sT, it cannot be
the characteristic number for determining the damping of the
thermal wave predicted by the DPL model, especially when sT is
Fig. 5. Effects of the damping factor xDPL on the damping levels of the (a) temperature and (b
the changes of L, sq, k, r and Cv, respectively.
relatively large. Considering there is no effective method to deter-
mine the impact of sT on the speed of the thermal wave predicted
by the DPLmodel and its heat diffusion quantitatively currently, the
more appropriate definition of the damping factor for the DPL
model considering the impacts of sT needs further studies.

4.3. TM model

The TM model includes not only the inertia term of heat flux to
time, but also the inertia term of the temperature to time and
nonlocal effects of the temperature and heat flux. To facilitate the
studies, we can first neglect the inertia term of the temperature to
time and nonlocal terms and only retain the inertia term of the heat
flux to time. The corresponding TM model in Eq. (7) turns into

qþ sTM
vq
vt

¼ �k
vT
vx

: (29)

As the relaxation time sTM is a function of the local temperature
and the local temperatures that the thermal wave passes are varied,
the damping factors are also varied, and hence it’s very difficult to
determine the synthetic damping factor for the whole process.
Besides, Zhang et al. [44] reported that if considering the case that
the relaxation time sTM decreases with the temperature increasing,
the thermal wave predicted by the TM model will propagate faster
in regions with higher temperature, and therefore the dispersion
phenomenon will occur. Under this situation, many peaks of the
temperature will appear in the propagation process of the thermal
) heat flux predicted by the DPL model, in which the damping factors are varied due to
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wave, hence it’s more difficult to determine the damping levels of
the temperature and heat flux, and the corresponding damping
factor. For the convenience of the test of the damping levels of the
temperature and heat flux and the damping factor, we can consider
the situation that the temperature increase is quite small. So,
through assuming that the temperature in the relaxation time sTM
is the initial temperature T0, the TM model in Eq. (29) becomes

qþ sTM0
vq
vt

¼ �k
vT
vx

; (30)

where sTM0 ¼ k=ð2grC2
vT0Þ: So, the simplified TMmodel in Eq. (30)

is similar to the CV model with the only difference of the relaxation
time. If changing the mass density r, thermal conductivity k and
heat capacity Cv, the relaxation time sq in the CV model is constant
while the characteristic time sTM0 in the simplified TM model
changes accordingly.

Using the base condition TM-1, we obtained the effects of the
damping factor xTM0 ðL= ffiffiffiffiffiffiffiffiffiffiffiffiffi

asTM0
p Þ on the damping levels of the

temperature and heat flux predicted by the simplified TMmodel in
Eq. (30), as shown in Fig. 6. Here, the damping factors are varied
due to the changes of L, g, k, r and Cv, respectively. Besides, if one of
L, g, k, r and Cv changes, we assume the others do not change. From
Fig. 6, it can be found that similar to the CV model, effects of the
damping factor xTM0 due to the changes of L, g, k, r and Cv separately
on the damping level of the heat flux 3q predicted by the simplified
TM model overlap together while those on the damping level of
temperature 3T do not. The increase of the damping factor xTM0 due
to the changes of L, g, k, r or Cv all can result in more energy
transported by the thermal wave diffused after travelling the dis-
tance L, and hence the damping level of the heat flux predicted by
the simplified TM model also increase with the damping factor
xTM0. So, the variation trends of the damping level of the heat flux
predicted by the simplified TMmodel with the damping factor xTM0
are same with the CV and DPL models. But for the damping level of
the temperature predicted by the simplified TMmodel, its variation
trends with k, r and Cv is different from those predicted by the CV
model. Unlike that the decrease of k leads to the increase of
DT*ðxTp0Þ predicted by the CV model, the decrease of k can lead to
the decrease of DT*(xf0) predicted by the simplified TM model,
which is due to the increase of the relaxation time sTM0. So, with the
damping factor xTM0 increasing due to the decrease of k, the in-
crease of 3q first takes a major role and then the decrease of (1� (1/
(1 þ DT*(xp0T )))) takes a major role, which further resulting in that
the damping level of the temperature first increases and then
decrease. The increase of g, r or Cv all can lead to the increase of the
Fig. 6. Effects of the damping factor xTM0 on the damping levels of the (a) temperature and
factors are varied due to the changes of L, g, k, r and Cv, respectively.
damping factor xTM0 and the decrease of DT*ðxTp0Þ: Under the pre-
sent situations, the decrease of (1 � (1/(1 þ DT*(xp0T )))) takes a
major role when g, r or Cv increases, and therefore the damping
level of temperature decreases with the increase of the damping
factor xTM0 due to the changes of g, r or Cv. Besides, it can be found
that the effects of the damping factor xTM0 on the damping level of
the temperature predicted by the simplified TM model do not
overlap together. This is because that although the impacts of r and
Cv on the temperature increase are same, they do not have the same
impact on the relaxation time sTM0. Since DT*ðxTp0Þ does not change
when L increases, the damping level of the temperature increases
with L increasing.

After the above discussion, we can know for evaluating the
damping of the thermal wave predicted by the simplified TMmodel
in Eq. (29), the damping level of the heat flux 3q is a better factor
than that of the temperature. Under the base condition TM-1, ef-
fects of the damping factor due to the changes of L, g, k, r and Cv
separately on the damping level of the heat flux overlap together
show that the damping factor xTM ðL= ffiffiffiffiffiffiffiffiffiffiffi

asTM
p Þ can be a characteristic

number for determining the damping of the thermal wave pre-
dicted by the simplified TM model in Eq. (29). Besides, it should be
particularly mentioned that the reference positions xTp0 and xqp0 do
not affect the above conclusions.

Further, if considering the inertia term of the temperature to
time and nonlocal effects of the temperature and heat flux, we need
to test whether the damping factor xTM ðL= ffiffiffiffiffiffiffiffiffiffiffi

asTM
p Þ applies to the TM

model in Eq. (7). Also considering the situation the temperature
increase is quite small and only assuming the temperature in the
relaxation time sTM of the inertia term of the heat flux to time is the
initial temperature T0, the TM model in Eq. (7) can be transformed
into

qþsTM0
vq
vt

�sTM
q
T
vT
vt

þsTM
q

rCvT
vq
vx

�sTM
q

rCvT
$
q
T
vT
vx

¼�k
vT
vx

: (31)

Using the base condition TM-2, we obtained effects of the
damping factor xTM0 ðL= ffiffiffiffiffiffiffiffiffiffiffiffiffi

asTM0
p Þ on the damping levels of the

temperature and heat flux predicted by the simplified TMmodel in
Eq. (30), as shown in Fig. 7. Here, the damping factors are varied due
to the changes of L, g, k, r and Cv, respectively. Besides, if one of L, g,
k, r and Cv changes, we assume the others do not change. From
Fig. 7, it can be found that unlike that for the simplified TMmodel in
Eq. (30), effects of the damping factor xTM0 due to the changes of L,
g, k, r and Cv separately on the damping level of the heat flux do not
overlap together. This is due to the impacts of the inertia term of the
temperature to time and nonlocal terms on the speed of the ther-
mal wave predicted by the TMmodel as well as the heat diffusion in
(b) heat flux predicted by the simplified TM model in Eq. (30), in which the damping
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Fig. 7. Effects of the damping factor xTM0 on the damping levels of the (a) temperature and (b) heat flux predicted by the TM model in Eq. (31), in which the damping factors are
varied due to the changes of L, g, k, r and Cv, respectively.
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this process, which is similar to those of the inertia term of the
temperature gradient to time on the DPL model. Also similar to the
DPL model, effects of the damping factor xTM0 due to the changes of
L, g, k, r and Cv separately on the damping level of the heat flux
overlap together only when the heat diffusion is strong. The vari-
ation trends of the damping level of the temperature with the in-
crease of the damping factor xTM0 due to the changes of L, g, k, r or
Cv is same with those predicted by the simplified TM model.

4.4. Exponential damping

From the Boltzmann relationship [18], we can know that the
damping of the energy transported by the thermal wave usually
takes the exponential form. The damping of the thermal waves
predicted by the CV, DPL and TM models is similar to that of the
damped oscillations. For the typical damped oscillations [45], the
damping of their amplitudes also takes in the exponential form. For
the above considerations, we retreated data about effects of the
damping factors xCV and xTM0 on the damping levels of the heat flux
predicted by the CV and simplified TM models, respectively. Re-
lationships between the damping factors xCV, xTM0 and �ln(1 � 3q)
predicted by the CV and simplified TM models are shown in Fig. 8.
The common good linearity between the damping factors xCV, xTM0
and �ln(1 � 3q) predicted by the CV and simplified TM models
confirmed the exponential damping of the thermal waves. Besides,
from Fig. 8, we can find that the two slopes predicted by the CV and
simplified TM models are both very close to 0.5.
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Fig. 8. Relationships between the damping factors (a) xCV, (b) xTM0 and
Why the exponential damping happens in this process and the
two slopes are very close to 0.5? Taking the CVmodel again, wewill
present the reasons. First, we combine the CV model in Eq. (4) and
energy conservation equation in Eq. (8) and get the following
equation:

sq
v2q
vt2

þ vq
vt

� a
v2q
vx2

¼ 0: (32)

Then, using the Fourier analysis method [46], we can define q as

q ¼
XþN

n¼�N

AnðtÞeinx; (33)

where An(t) is the amplitude of the wavelet, whose wave number is
n, at the time t. i is the imaginary number. n ¼ 1/l, in which l is the
wavelength of the corresponding wavelet. Further, substituting the
Eq. (33) into the Eq. (32), we can get the relationship:

XþN

n¼�N

"
sq
v2AnðtÞ
vt2

þ vAnðtÞ
vt

þ an2AnðtÞ
#
einx ¼ 0: (34)

Considering that the base feinxg has linear independence, for the
wavelet whose wave number is n, we can always obtain the
equation:
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�ln(1 � 3q) predicted by the (a) CV and (b) simplified TM models.



Table 2
Conditions for the CV and simplified TM models, in which only the travelling dis-
tance L varied.

k r Cv T0 d sq sT g x*f0 L

CV-1S 0.1 1.0 1.0 1.0 1.0 0.20 e e 0.2 Varied
CV-2M 0.4 1.0 1.0 1.0 1.0 0.05 e e 0.2 Varied
CV-3B 1.0 1.0 1.0 1.0 1.0 0.02 e e 0.2 Varied
TM-1S 1.0 20.0 1.0 1.0 1.0 e e 0.1 0.2 Varied
TM-2M 5.0 20.0 1.0 1.0 1.0 e e 2.5 0.2 Varied
TM-3B 10.0 20.0 1.0 1.0 1.0 e e 10.0 0.2 Varied
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sq
v2AnðtÞ
vt2

þ vAnðtÞ
vt

þ an2AnðtÞ ¼ 0; (35)

which applies to arbitrary wave number. So, we can find the Eq.
(35) is similar to the viscously damped free vibration equation [45].
Using the damped free vibration theory [45], we can get the ex-
pressions of An(t), as followings:

AnðtÞ ¼ e�zut
�
C1 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
wt

þ C2 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
wt
	
; if z < 1; (36)

AnðtÞ ¼ e�zutðC3 þ C4tÞ; if z ¼ 1; (37)

AnðtÞ ¼ C5e
�


z�

ffiffiffiffiffiffiffiffiffi
z2�1

p �
wt þ C6e

�


zþ

ffiffiffiffiffiffiffiffiffi
z2�1

p �
wt ; if z > 1: (38)

Here, z is the damping ratio 1
2
ffiffiffiffiffiffiffiffiffiffi
an2sq

p ; and w is the natural angular
velocity

ffiffiffiffiffiffi
an2

sq

q
: The situations z < 1, z ¼ 1, and z > 1 correspond to

the underdamped, critically damped, and overdamped cases. Be-
sides, C1, C2, C3, C4, C5, and C6 are the arbitrary constants determined
from the initial conditions. The above analyses are consistent with
the thermal vibration phenomena discussed by Xu and Wang [47]
for the dual-phase-lagging (DPL) heat conduction model and
Cheng et al. [48] for the single-phase-lagging heat conduction
model. Xu and Wang [47] also divided the thermal vibration phe-
nomenon into the underdamped, critically damped, and over-
damped cases, but their study only focused on the temperature
distribution.

For the underdamped case, its amplitude always satisfies the
exponential damping relationship. For the critically damped case,
its amplitude satisfies the exponential damping relationship only
when C4 ¼ 0. For the overdamped case, its amplitude satisfies the
Fig. 9. Relationships between the damping factors (a) xCV, (b) xTM0 and �ln(1 � 3q) predicted
blunt thermal waves.
exponential damping relationship in most of the propagation
process of the thermal wave with the deviation occurring only at
the primary stage. Considering the critically damped case is indi-
vidual and the range of the wave number is from negative infinity
to positive infinity, the exponential damping relationship applies to
the propagation process of the thermal wave predicted by the CV
model in most conditions, with the deviation occurring only when
the overdamped cases take a major role and the thermal wave stays
at the primary stage of its propagation process.

The situation z < 1 takes the form an2sq > 1/4, namely (asq/
l2) > 1/4. By observing the thermal waves predicted by the CV and
simplified TMmodels under the base conditions CV-1 and TM-1, we
can find that the thermal waves are both very sharp, whichmeans l
is very small and most wavelets stay at the underdamped cases. So,
from Eq. (36), we can obtain that

An

 
tf0 þ Lffiffiffiffiffiffiffiffi

a=sq
p

!�����
max

An

�
tf0
����

max

¼ e
�1

2
Lffiffiffiffiffi
asq

p ¼ e�
1
2 xCV ; (39)

where tf0 corresponds to the time when the wave frontier reaches
xf0. Since the coefficient for the amplitude of each wavelet with the
damping factor xCV is 0.5 and the critically damped and over-
damped cases can affect the coefficient, the slope of �ln(1 � 3q)
predicted by the CV model to the damping factor xCV is near 0.5, as
shown in Fig. 8(a). Considering the similarity between the CV and
simplified TM models, the above analyses and conclusions also
apply to the simplified TM model.
4.5. Sharp and blunt thermal waves

From the above discussion, we can find that when the thermal
waves predicted by the CV and simplified TMmodels are blunt, the
overdamped cases will increase and the corresponding slope
of �ln(1 � 3q) to the damping factor xCV will change. So, we need to
compare the propagation behaviours of the sharp and blunt ther-
mal waves. Here, the sharp thermal wavemeans that the amplitude
of the thermal wave is high while its bottomwidth is small, and the
blunt thermal wave corresponds to the contrary. For the above
considerations, we design conditions in Table 2 for the CV and
simplified TM models, in which only the travelling distance L var-
ied. Conditions CV-1S, CV-2M, and CV-3B correspond to a group of
sharp, medium, and blunt thermal waves predicted by the CV
model. Conditions TM-1S, TM-2M, and TM-3B correspond to a
by the (a) CV and (b) simplified TMmodels under three situations: sharp, medium, and
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group of sharp, medium, and blunt thermal waves predicted by the
simplified TM model.

Fig. 9 presents the relationships between the damping factors
xCV, xTM0 and �ln(1 � 3q) predicted by the CV and simplified TM
models under three situations: sharp, medium, and blunt thermal
waves. It can be seen that for the CV and simplified TMmodels, the
sharp, medium, and blunt thermal waves predict different slopes
of �ln(1 � 3q) to the corresponding damping factor and
different �ln(1 � 3q) under the same damping factor, namely
different damping levels of heat flux under the same damping
factor. This is due to the increase of overdamped cases when the
bottom width of the thermal wave increases, which changes the
slope of �ln(1 � 3q) to the corresponding damping factor and
makes that the damping factors xCV and xTM cannot be the char-
acteristic numbers for determining the damping of the thermal
waves predicted by the CV and simplified TM models.

5. Conclusions

The damping levels of temperature and heat flux ( 3T, 3q) were
defined for evaluating the damping of the thermal waves predicted
by the CV, DPL, and TM models. The damping level of the heat flux
is found to be a better factor for this because the heat flux is directly
related to the energy transported by the thermal wave while the
temperature can be also affected by the thermal properties. The
damping factor x ðL= ffiffiffiffiffi

as
p Þwas defined for determining the damping

of the thermal waves predicted by the CV, DPL, and TM models,
where L is the travelling distance of the thermal wave, a is the
thermal diffusivity, and s is the corresponding relaxation time. x
represents the ratio of the time that the thermal wave needs to
travel the distance L to the relaxation time, or

ffiffiffi
3

p
times of the

reciprocal of the Knudsen number.
For the sharp thermal waves predicted by the CV and simplified

TM models, the damping factors xCV and xTM can be the charac-
teristic numbers that has a decisive impact on the damping level of
the heat flux, in which the simplified TM model only retain the
inertia term of the heat flux to time while neglecting the inertia
term of the temperature to time and nonlocal terms in the TM
model. But if both including the sharp and blunt thermal waves, the
increase of overdamped cases under the blunt thermal wave situ-
ation will lead to the deviation for the characteristic numbers. For
the sharp thermal waves predicted by the DPL and TM models, the
damping factors xDPL and xTM cannot be the characteristic numbers,
which is due to the impacts on the propagation speed of the
thermal wave and its heat diffusion caused by the inertia term of
the temperature gradient to time for the DPL model, and the inertia
term of the temperature to time and nonlocal terms for the TM
model, respectively.

For the thermal waves predicted by the CV and simplified TM
models, their propagation processes satisfy the exponential
damping relationship in most situations, with the deviation
occurring only when the overdamped cases play a major role and
the thermal waves stay at the primary stage. Besides, the sharp and
blunt thermal waves predict different slopes of �ln(1 � 3q) to the
damping factor x. If the thermal wave is sharper, the overdamped
cases are fewer, and therefore the corresponding slope
of �ln(1 � 3q) to x is closer to 0.5.
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