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� We establish a ballistic–diffusive model
for the phonon transport in nanofilms.

� We predict the cross plane thermal
conductivity of silicon nanofilms.

� We analyze the size-induced aniso-
tropy of thermal conductivity of sili-
con nanofilms.
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a b s t r a c t

The effective thermal conductivity of nanofilms is size dependent due to the diffusive–ballistic transport
of phonons. In this paper, we investigate the cross-plane phonon transport from the viewpoint of the
phonon Boltzmann equation. A predictive model for the size dependent thermal conductivity is
proposed and agrees well with the results of molecular dynamics simulation for silicon nanofilms.
The ballistic transport has different effects on the heat conduction in the in-plane or cross-plane
directions, which causes the anisotropy of thermal conductivity of nanofilms. Such anisotropy is also size
dependent and vanishes with the increase of film thickness.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In classical theory, the heat conduction obeys the Fourier's law,
i.e. q¼�κ∇T. It means that the heat flux density, q, is proportional
to the temperature gradient ∇T. The coefficient, κ, is the thermal
conductivity. If the material is ideally isotropic, κ is the same in all
directions. The asymmetry of material will cause an anisotropic κ.
For example, κ changes along different axes of a crystal; it can vary
several hundred times for graphite when measured along the

plane or perpendicular to the plane. On the other hand, for layered
composites, the in plane conductivity is in general different from
the cross plane one because the former is determined by the sum
of conductances of each layer while the latter is by the sum of
resistances.

The above two cases indicate that the anisotropy of κ can either
rise from the asymmetry of atomistic level (the spatial distribution
of atoms in unit cell) or macroscopic level (the spatial distribution
of component materials). However, in both cases κ is a constant
property of the material regardless of the system size. In recent
years, it has been found that the effective κ of nanostructured
materials is size dependent and significantly different with their
bulk counterparts [1–8]. It is recognized that Fourier's law is
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applicable in the diffusive limit, where the heat carriers are fully
scattered or relaxed. In nanosystems, the heat conduction is not
purely diffusive but contains a ballistic part, since the system size
is comparable with the mean free path of heat carriers. Models
different from Fourier's law should be used to describe the
ballistic–diffusive transport, which is nonlocal and geometry
sensitive. When the angle between the temperature drop direction
and the characteristic size of system changes, e.g. in the in-plane
or cross-plane direction of a nanofilm, the apparent thermal
conductivity also changes. In this way, the effective k of nanosys-
tems are expected to be anisotropic. Compared with previous
cases, such anisotropy rises from the asymmetry of the mesoscopic
level and depends on the system size. The anisotropy of κ in
nanosystems is worth investigating in the light of increasing
importance of energy transport in nanoscale.

To model the anisotropy of κ in asymmetric nanosystems, the
ballistic–diffusive phonon transport needs to be characterized. The
phonon Boltzmann transport equation (BTE) is widely used to
calculate the thermal transport property of nanostructured mate-
rials. Chen [9,10] studied the cross plane transport of GaAs/AlAs
and Si/Ge superlattices through the numerical solution of a single-
mode relaxation-time BTE and concluded that the interface
scattering significantly reduced the total κ of superlattices. The
similar algorithm was applied to calculate the phonon transport in
periodic two-dimensional Si/Ge nanocomposites [11], superlattice
nanowires [12] and polycrystalline materials with randomly
oriented superlattice grains [13]. Strong size effects of the effective
thermal conductivity are observed in these systems. Maldovan [14]
studied the ballistic–diffusive phonon transport in nanosystems
through the Boltzmann transport equation. He found that the
principle for ballistic transport should be modified by considering
the combined effects of length scale, temperature, and boundary
roughness. The Monte Carlo (MC) method is another powerful tool
to numerically solve the BTE for nanosystems. The transport in
nanowires and nanofilms was investigated in terms of the MC
method and the effect of size and boundary roughness was
demonstrated [15,16].

Macroscopic models based on the solution of BTE have been
proposed in the past decades. These models can retain the agree-
ment with experiments for nanosystems while avoiding heavy
numerical work. Majumdar [17] formulated the equation of phonon
radiative transfer (EPRT) to solve the BTE. A simple theoretical
model for the effective thermal conductivity of diamond films was
proposed in analogy with the photon radiative heat transfer and
agrees well with the EPRT solution. Since the phonon mean free
path is assumed to be independent of the phonon frequency and
branch, this model was called the Gray model. McGaughey et al. [18]
accounted the frequency dependent group velocity and phonon life-
times and obtained an analytical model for the effective conductiv-
ity of nanofilms. The phonon hydrodynamics model [19–25] is
proposed based on the eigenvalue solution of the linearized phonon
BTE. It contains a Laplacian term of heat flux, which is similar to the
viscous term in Navier–Stokes equation. Therefore, a Poiseuille flow
of phonons is likely to form in small systems. The thermomass
theory [26–34] establishes generalized thermal transport equations
based on the momentum balance equation of phonon gas, which is
consistent with the solution of phonon BTE. It is similar to the
phonon hydrodynamic model with the parameters in constitutive
equations having more fluidic meaning such as the phonon gas
viscosity. The in-plane phonon transport in the nanofilms and
nanowires was modeled by a rarefied phonon gas flow in porous
mediumwith a size dependent viscosity and a good agreement with
experiments was obtained [33,34]. In this paper, we will discuss the
cross-plane κ of the Si nanofilm from the viewpoint of phonon BTE.
The ballistic–diffusive phonon transport and its induced anisotropy
of κ are investigated.

2. Phonon gas model and in-plane heat conduction

In dielectric solids the phonon is the main carrier of thermal
energy. The thermal conductivity, κ, of a condensed matter is
expressed in a similar way to that of gas [35]

κ ¼ 1
3 ρCVv2s τR ¼ 1

3 ρCVvsλR; ð1Þ

where ρ is the material density, CV is the specific heat, vs is the
mean phonon group velocity, τR is the average relaxation time of
the resistive (R) scattering processes, λR¼vsτR is the corresponding
mean free path. Eq. (1) is called the kinetic model which does not
include the boundary effect on thermal conduction [16]. Based on
the eigenvalue solution of the linearized phonon BTE, Guyer and
Krumhansl [19–20] established a generalized thermal transport
equation, called the GK model

τR
∂q
∂t

þq¼ �κ∇Tþ l2G ∇2qþ2∇∇q
� �

; ð2Þ

where lG is a characteristic length which contains the effects of
both R and normal (N) processes

lG ¼
ffiffiffiffiffiffiffiffiffiffiffi
λRλN
5

r
; ð3Þ

where λN¼vsτN is the mean free path of the N processes. Based on
Eq. (2), the collective behavior of phonons is analogous to a fluid
flow, since the Laplacian term on the right hand side is similar to
the viscous dissipation term in the Navier–Stokes equation.

For the steady in-plane heat conduction in a film with a
thickness H, the GK model can be simplified as [19,20]

�κ∇T ¼ q� l2G∇
2q: ð4Þ

The left hand side of Eq. (4) is the driving term. The second term
on the right hand side of Eq. (4) allows the boundary to impede
the heat flow. When the system size shrinks, the boundary
resistance becomes important and reduces the effective κ. If one
assumes the heat flux vanishes at the boundary (non-slip) and lG is
a constant, a quadratic dependence on size of the effective κ is
predicted by Eq. (4) [21–23]. However, the experimental results
show a linear dependence of κ on size [2–5,21]. Given that the
phonon gas is possible to exhibit rarefaction effect at high
Knudsen number (Kn) cases, the assumption of non-slip boundary
and constant viscosity needs to be modified. Alvarez, Jou, and
Sellitto [21–23] proposed a Maxwell slip boundary condition,
qwpλR∂q/∂r, to replace the non-slip boundary condition and the
linear size dependence was recovered. Ma [24] indicated that the
non-dimensional boundary slip heat flux is proportional to the
effective mean free path, which is a function of the Knudsen
number. Then the effective κ of both nanofilms and nanowires are
analytically derived.

In a previous work, a macroscopic phonon gas model is
developed based on the thermomass theory [33,34]. The heat
conduction is modeled as a weighable phonon gas flow passing
through a porous medium. From the phonon gas viewpoint, the
boundary scattering will terminate the mean free paths of both R
processes and N processes. The reduction of λR can be interpreted
as the variation of porosity, while the reduction of λN reflects the
viscosity decrease as in rarefied gas dynamics. Accounting the
above two effects simultaneously, the heat flux profile for the in
plane heat conduction in a nanofilm is determined by [34]

λR;eff zð Þ
λR;0

κ0∇T ¼ �q zð ÞþλR;eff zð ÞλN;eff zð Þ
5

∇2q zð Þ; ð5Þ

where z is the distance from the central line (as shown in Fig. 1(a)),
subscript 0 means the value measured in the bulk sized material
and subscript eff means the local value measured in the nano-
sized material. The local effective thermal conductivity is different
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from the bulk value, namely κ(z)/κ0¼λR,eff/λR,0. The effective mean
free paths are obtained by assuming the boundary is purely
diffusive, i.e. its emission is totally uncorrelated with the absorp-
tion. For nanofilms, one gets for the effective MFPs in analogy with
the algorithm for microfluidics [34,36,37]

λj;eff zð Þ
λj;0

¼ 1þ1
2 α�1ð Þe�αþ β�1

� �
e�β�α2Ei αð Þ�β2Ei β

� �h i
: ð6Þ

where

α¼H=2�z
λj;0

; β¼H=2þz
λj;0

; Ei θ
� �¼ Z 1

1
t�1e� tθdt: ð7Þ

with j representing R or N. With specified λR,0 and λN,0, Eq. (5) can
be numerically solved and the effective κ for in plane conduction is
obtained. In a previous paper [34], we use λR,0¼42 nm, which is
the classical value based on Eq. (1), and λN,0¼360 nm, which is the
optimum value for the both Si nanofilms and nanowires at room
temperature and gives good agreement with the experiments. In
general λN,0 depends on the branch and frequency of phonons.
Here an average value of λN,0 is adopted to maintain the simplicity
of this model. The first principle calculation [38] shows that at the
room temperature the average value of λN,0 is several times larger
than λR,0, which agrees with the present assumption.

3. Cross plane heat conduction model based on BTE

Compared with the in plane heat conduction, the experimental
results for cross plane heat conduction in nanofilms are rare, since
the contact resistance could be much larger than the film resistance.
Nevertheless, there are some numerical results for this issue such as
the MC and MD simulations, which also indicated the strong
decrease of effective κ from the bulk value. Terris and coworkers
[16] used three numerical methods, including kinetic theory of
phonon gas, MC and discrete ordinate method, to calculate the cross
plane conduction of Si nanofilm. They found the cross plane
conductance is nearly constant in the sub-50 nm region. It means
that the effective κ is a linear function of film thickness, H, and
shrinks to zero when H-0. Feng, Wang and Li [39,40] carried out
MD simulation for the cross plane κ of Si nanofilm. The linear size

dependence of effective κ is also observed, which is a similar
behavior to the in plane conduction.

The collective transport of phonons is characterized by the
phonon BTE, which generally has the form [19,29]

∂
∂t
þvsk kð Þ∇

� �
f s ¼ Cf s; ð8Þ

where f(k, x, t) is the distribution function of phonons, k is the
wave vector, s is the index of phonon branches, vk is the group
velocity, vk¼∂ω/∂k, ω is the frequency, C is the collision operator.
The macroscopic properties, namely internal energy density e and
heat flux q, are obtained through the integral of f over the k space,

e¼∑
s

Z
k
ℏωsf s; ð9Þ

qi ¼∑
s

Z
k
ℏωsvsk;if

s: ð10Þ

To solve the BTE the collision operator C needs to be properly
specified. In the following we do not write s and the summation
over phonon branches is defaulted. The collision operator C is
assumed to have a dual relaxation form [29]

Cf ¼ � f � f E
τR

� f � f D
τN

; ð11Þ

where τR and τN are the characteristic relaxation times of R and N
processes, fE is the Planck distribution for the thermal equilibrium
state

f E ¼
1

exp ℏω=kBT
� ��1

; ð12Þ

fD is the displaced Planck distribution which conserves the phonon
momentum

f D ¼ 1
exp ℏω�ℏkuð Þ=kBT

� ��1
; ð13Þ

where u is the drift velocity of phonon gas. The contribution of N
processes is neglected by many numerical solutions of BTE [10–16],
where τR can be either a constant (gray approximation) or depend
on temperature, frequency and polarization. If the R processes are
rare, such as in pure crystals at low temperature, f is close to fD, thus
the effect of N processes can be reasonably neglected. In contrary,
for materials at higher temperature, R processes are significant.
Thus the distribution function deviates from fD, and the second term
on the left hand side of Eq. (11) (called Nf in following) should be
accounted. A Chapman–Enskog expansion can be made to account
the Nf term, which leads to the ∇2q term in Eq. (2) [29]. Therefore,
the N processes also contribute to the thermal resistance when fa fD
in the in-plane conduction problems. The effect of ∇2q term is only
significant in small systems, where Kn is relatively large [20,21].

For the cross-plane conduction in nanofilms, the distance
between the heat baths is too short to fully relax the phonon
distribution function. The phonons emitted from one heat bath
have a large chance to arrive at another side without scattering,
namely transport ballistically. Thus the phonon distribution func-
tion can be far from fD due to the ballistic transport, and the Nf
term in Eq. (11) should be accounted. Chen established a Ballistic–
Diffusive [41] heat conduction model by separately considering the
ballistic part and diffusive part of phonon distribution function,
which successfully characterizes the fast-transient heat conduc-
tion across thin films. The ballistic part originates from the
boundary and attenuates to zero with a characteristic length, vsτ.
The diffusive part obeys the BTE with a single relaxation collision
term, thus the Nf term in Eq. (11) is neglected. For the steady state
cross plane heat conduction, we also assume that the local
distribution function can be separated into a ballistic part and a

Fig. 1. (a) In-plane heat conduction of nanofilm; (b) cross-plane conduction of
nanofilm. Th means the hot end while Tc is the cold end.
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diffusive part

f ¼ f Bþ f d; ð14Þ
where fB is the ballistic part emitted from the boundary, fd is the
diffusive part which is fully relaxed by the scattering, as shown in
Fig. 2.

Guyer and Krumhansl [19,20] describe the picture of R and N
processes as: The N processes do not break the total quasi-
momentum of phonon gas, they just transfer the momentum
between phonons to achieve a uniform drift. If the phonon gas
already drifts uniformly, i.e. obeys the distribution of fD, then the
effect of N processes vanishes. For the one-dimensional heat
conduction in bulk materials, the diffusive transport dominates.
The phonon gas drifts uniformly with a constant heat flux. On the
other hand, the transport region is far from the boundary com-
pared with the MFP, thus the effect of N processes cannot exhibit.
Therefore, we can approximate fd in Eq. (14) by the displaced
Planck distribution, fD, in Eq. (13). It means that the diffusive part
of phonon gas is not influenced by the N processes. This approx-
imation is also adopted by Chen [41].

Inserting Eq. (14) into Eq. (10) one obtains

q¼
Z
k
ℏωvk f Bþ f D

� �¼ qBþqD; ð15Þ

where qB and qD are the heat flux contributed by fB and fD,
respectively. Note that the heat flux here only means the energy
flux passing through each cross-section. In very thin films the
distribution function can highly deviate from the near equilibrium
state and the state variables are ill defined. In one-dimensional
transport the heat flux is constant in each location, thus qB gets its
maximum value at the boundary and decreases with the distance
away from the boundary. Conversely, qD is smallest at the
boundary and increases continuously. The ballistic phonon dis-
tribution emitted from the boundary converts to the diffusive
distribution with the distance away from the boundary due to the
scattering processes. If the film is thick, the region where fB is
important is negligible compared to the whole system, so the
phonon distribution is well approximated by fD and the Fourier's
law is recovered. In nanosystems, the ballistic region is non-
negligible and the behavior of fB is critical for the cross plane
conductance.

Multiplying Eq. (11) with ħωvk and integrate it in k space yields

1
3
ρCVvs

∂T
∂z

¼ � qB
λR

þqB
λN

� �
�qD
λR

: ð16Þ

If qB¼0, i.e. in the diffusive limit, then Eq. (16) turns to

�1
3
ρCVvDλR

∂T
∂z

¼ qD: ð17Þ

which is the Fourier's law with κ¼ρCVvsλR/3. With this expression
of κ Eq. (16) turns to

�κ
∂T
∂z

¼ qDþqBþ
λR
λN

qB ¼ qþλR
λN

qB; ð18Þ

which shows qB provides an additional resistance to the heat
transfer. In this way, the normal process contributes to the thermal
resistance if the phonon distribution contains a ballistic part. In
the classical phonon theory the N processes do not contribute to
the thermal resistance in bulk materials [35]. However, Ward and
Broido [42] indicated that the N processes also contribute to the
diffusive thermal conductivity in the first principle calculation.
Tomas et al. [43] found that the collective thermal conductivity,
which rises from both the N and R processes, is lower than the
kinetic one, which rises from only the R processes. In our present
derivation, the N processes provide additional thermal resistance
in thin nanofilms where qB plays an important role. This effect
originates from the second term on the right hand side of Eq. (11).

To quantitatively evaluate the cross plane conductivity of
nanofilms, the profiles of qB and qD need to be obtained. It can
be inferred from Eqs. (11) and (16) that only R processes influence
the diffusive heat flux, while both R and N processes attenuate the
ballistic heat flux. Thus qB loses momentum through both R and N
processes. The R processes directly break the quasi-momentum,
while the N processes take the momentum out of the ballistic
distribution and convert it into the diffusive distribution. In this
sense, the characteristic length for the conversion from qB to qD is
λN. Assume the boundary is completely diffusive, i.e. fD¼0 at the
boundary, and remind that the total heat flux, q, is a constant, one
obtains for the local value of qB and qD

qB zð Þ ¼ q
exp �z=λN

� �þexp z=λN
� �

exp �H=2λN
� �þexp H=2λN

� �¼ q
cosh z=λN

� �
cosh H=2λN

� �; ð19Þ

qD zð Þ ¼ q�qB xð Þ ¼ q 1� cosh z=λN
� �

cosh H=2λN
� �

" #
: ð20Þ

If we impose a unit flux q passing through the systems, the
temperature drop can be decided through Eqs. (18)–(20). Then
one gets the effective cross plane heat conductivity. Note that the
mean free paths in Eqs. (18)–(20) are the local effective mean free
paths, λR,eff and λN,eff, calculated through Eqs. (6) and (7).

4. Anisotropy of Si nanofilms

We examine the anisotropy of Si nanofilms at room temperature
for there are most experimental and theoretical results for compar-
ison. The in-plane conductivity κx is calculated with Eq. (5) while
the cross plane conductivity κz is calculated by Eqs. (18)–(20). The

Fig. 2. The scheme of the ballistic–diffusive transport in cross plane direction.
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Fig.3. The size dependent cross-plane conductivity of Si nanofilm at room
temperature. Present model calculated from Eqs. (18)–(20) (solid line), Gray model
[17] (dashed line), McGaughy model [18] (dashed line with circle) and comparison
with MD results [39,40] (square dots).

Y. Dong(董源) et al. / Physica E 66 (2015) 1–64



effective mean free paths are determined by Eqs. (6) and (7). The
value of bulk mean free paths are chosen as λR,0¼42 nm, and
λN,0¼360 nm. The size dependent cross plane conductivity κz of a Si
nanofilm is presented in Fig. 3. The predictions of the Gray model
[17] and McGuaghey model [18] are also shown in Fig. 3. The
present model agrees well with the MD results by Feng, Wang and
Li [39,40].

The anisotropy is defined as

A¼ κz
κx
; ð21Þ

In Fig. 4 the dependence of A on the film thickness is presented. A
has a maximum value of near 1.8 at the limit H-0, while reduces
to 1 at the bulk limit.

The maximum anisotropy can be theoretically derived from the
present model. It can be easily verified from Eqs. (6) and (7) that
both λR,eff and λN,eff, reduce to H at the limit H-0. In this case, the
heat flux for the cross conduction is pure ballistic, i.e. qB dominates.
The effective thermal conductivity is extracted from Eq. (16)

lim
H-0

κz ¼
H
2
κ0
λR;0

: ð22Þ

For the in-plane conductivity, the effective conductivity is deter-
mined by Eq. (5) which turns to

H
λR;0

κ0∇T ¼ �q zð ÞþH2

5
∇2q zð Þ; ð23Þ

The solution of Eq. (23) is

lim
H-0

κx ¼
κ0H
λR;0

1�2lG
H

tanh
H
2lG

� �	 

¼ κ0H
λR;0

1� 2ffiffiffi
5

p tanh

ffiffiffi
5

p

2

 !" #
: ð24Þ

It can be seen that at the ballistic limit, both κz and κx are linear to
the film thickness, H, which agrees with the experimental and
numerical results. Then the anisotropy at the thin film limit is

lim
H-0

κz
κx

¼ 1

2 1� 2=
ffiffiffi
5

p� �
tanh

ffiffiffi
5

p
=2

� �h i� 1:8: ð25Þ

At this time the effective viscosity of phonon gas is strongly reduced
to the second order of H. Note that for κx, the diffusive resistance,
which rises from the first term of Eq. (5), is still important. If one
neglects this effect, Eq. (23) turns to

H
λR;0

κ0∇T ¼H2

5
∇2q zð Þ: ð26Þ

Then one would have

lim
H-0

κx ¼
5
12

κ0H
λR;0

; ð27Þ

which evidently overestimates the effective conductivity compared
with Eq. (24).

5. Concluding remarks

In essence, the anisotropy of Si nanofilms is caused by the
ballistic transport of phonons. The boundary scattering could be
competitive with the phonon–phonon scattering in nanosystems.
Therefore, the phonon distribution is not fully relaxed and the
ballistic part of the phonon distribution should be considered.
Based on the BTE with the dual relaxation approximation, Eq. (11),
we see that if f deviates from fD, then N processes also contribute
to the thermal resistance. Such deviation is caused by the
boundary scattering for nanofilms. For the in plane conduction,
the main direction of ballistic transport from the boundary is
perpendicular to the temperature drop, thus the contribution of N
processes is accounted by the phonon viscosity effect, which can
be evaluated by the Laplacian term of heat flux in Eq. (5). In this
situation the phonon gas flow is analogous to a fully developed gas
flow in a tube. For the cross plane conduction, the direction of
ballistic transport from the boundary is parallel to the temperature
drop, thus N processes also resist the heat flux if the phonon
distribution is ballistic. It is in analogy with the entrance effect in
fluid mechanics [27]. When the film thickness is much larger than
the phonon mean free path, the ballistic region becomes negli-
gible. Then the phonon transport is completely diffusive and the
thermal conductivity turns isotropic. The present model, however,
does not contain the quantum confinement effect of phonons. It is
a reasonable simplification since the investigated system has a
scale much larger than the characteristic wavelength of phonons,
which is about 1.4 nm for silicon at room temperature [14,44].

It is notable that the boundaries of Si nanofilms are assumed to be
pure diffusive in our model. It agrees with the presented experi-
mental conditions or assumptions made in numerical models. In
general cases the boundaries could be partly reflective or corrugated
(which may cause back-scattering) regarding the production method.
For the in plane heat conduction, the boundary condition could
strongly affect the effective conductivity. If the boundaries become
smoother, the κx will increase since boundary slip could happen.
Conversely, if the boundaries are made rough, backscattering is
possible to decrease κx. For the cross plane conduction, changing
the couple strength with the heat bath could modify the ratio of fB
and fD and consequently change the effective κz. It is expected that
the anisotropy of κ is tunable depending on the boundary features of
nanofilms such as roughness, heat treatment or deposited materials.
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