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In nanostructures whose characteristic lengths are comparable to the phonon mean free path, the
ballistic–diffusive heat conduction leads to the size effect, geometry dependence and anisotropy of the
effective thermal conductivity. In the present work, we have studied the effective thermal conductivity
of the ballistic–diffusive heat conduction in nanostructures (including nanofilms and nanowires) with
internal heat source using Monte Carlo simulation and Boltzmann transport equation. It is found that
the effective thermal conductivity of nanostructures with internal heat source is significantly lower than
that with temperature difference, though it still increases with the increasing characteristic length. The
models for the effective thermal conductivity and the temperature distribution of the cross-plane heat
conduction in the nanofilms with internal heat source are directly derived from the phonon
Boltzmann transport equation, and the comparisons with the Monte Carlo simulations well confirm their
validities. As for the effective thermal conductivity of the in-plane nanofilms and nanowires with internal
heat source, referring to the Matthiessen’s rule, the models are in the form of keff =kbulk ¼ 1=ð1þ aKnÞ, with
the parameter a obtained by the best fitting with the Monte Carlo simulations. Moreover, the diffusive
heat conduction equation with the effective thermal conductivity can well characterize the temperature
distributions in the in-plane nanofilms and long nanowires, while it fails in the short nanowires due to
the influence of the axial constraints.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Wide applications of semiconductor nanostructures in electron-
ics and photonics require further understanding of heat transport
at nanoscale [1]. Phonons predominate the heat transport in semi-
conductors [2]. For nanostructures whose characteristic lengths
are comparable to the phonon mean free path (MFP), owing to
the ballistic transport and the phonon-boundary scattering, heat
conduction deviates from the Fourier’s law which corresponds to
the limit of completely diffusive transport. The presence of both
the ballistic and diffusive transports leads to the ballistic–diffusive
heat conduction which is usually characterized by the phonon
Boltzmann transport equation (BTE) with the relaxation time
approximation [3],

~vg � rf ¼ f 0 � f
s

þ _SX; ð1Þ

where~vg is the group velocity, f is the phonon distribution function,
f0 is the equilibrium distribution function, s is the relaxation time,
and _SX is the phonon source per solid angle. In the ballistic–diffusive
regime, some of phonons can directly travel from one boundary to
another without internal scattering events, and the influence of the
phonon-boundary scattering becomes remarkable. Essential indica-
tions for the ballistic–diffusive heat conduction include the size
effect, geometry dependence and anisotropy of the effective ther-
mal conductivity [4–6].

Studies on the effective thermal conductivity of nanostructures
have been conducted both theoretically [7–15] and experimentally
[16–21]. It has been found that in the ballistic–diffusive regime the
effective thermal conductivity, which significantly reduces as com-
pared to the bulk material, increases with the increasing character-
istic length and varies with the direction of heat flow. In modeling
researches [7,8], a nanostructure is generally assumed to be in con-
tact with two heat sinks of different temperatures and the temper-
ature difference induces the heat flow. Then using the Fourier’s law
the effective thermal conductivity is calculated out. On the basis of
the temperature difference (TD) scheme stated above, the theoret-
ical models of the effective thermal conductivity have been derived
from the phonon BTE [7–9,22]. Besides the TD scheme has been
widely adopted in simulations [11,12] and experiments [4,16,17].
Actually, the TD scheme is not the only choice for the thermal
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Nomenclature

f phonon distribution function
f0 equilibrium distribution function
DOS function of phonon density of states
l mean free path
cV volumetric specific heat
vg average group velocity
Kn Knudsen number
k thermal conductivity
T temperature
T� dimensionless temperature
q heat flux
_SX phonon source per solid angle
L length of nanowire
D diameter of nanowire
Lx x-directional thickness of nanofilm
Ly y-directional thickness of nanofilm
_S internal heat source

Greek symbols
s relaxation time
�h Dirac constant
h polar angle
x angle frequency
q mass density
u azimuthal angle
g dimensionless coordinate

Subscripts
0 reference state
cr cross-plane
in in-plane
T temperature difference scheme
I internal heat source scheme
film nanofilm
wire nanowire
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conductivity measurements. The internal heat source (IHS) scheme
has also been used in experiments [18–21]. The internal heat
source is introduced in the nanostructures and the resulting tem-
perature rise is measured; then the effective thermal conductivity
is obtained by comparing the measuring result with the analytical
solution of the diffusive heat conduction equation. Liu and Asheghi
[18] measured the in-plane thermal conductivity of silicon layers
by introducing a steady-state uniform internal heat source
(Joule heating), while the theoretical model obtained from the TD
scheme was employed to analyze the experimental data. In the
experiments of Johnson et al. [20], a transient internal heat source
was introduced via diffraction of a laser beam to measure the
thermal conductivity of the free-standing silicon membranes. In
addition, the IHS scheme has also been a useful tool for the thermal
conductivity measurements of carbon nanotubes [1,21].

Although both the TD and IHS schemes have been widely
adopted for the thermal conductivity measurements, it is still
ambiguous whether the effective thermal conductivity obtained
by the TD scheme is the same as that by the IHS scheme, in partic-
ular for the ballistic–diffusive heat conduction. Li and Cao [13,14]
studied the effective thermal conductivity of the nanostructures
with internal heat source by the non-equilibriummolecule dynam-
ics simulations, and found that the effective thermal conductivity
in the IHS scheme was significantly lower than that in the TD
scheme. Phonons emit from the heat sinks at boundaries in the
TD scheme, while in the IHS scheme phonons originate within
the media, and the different phonon emitting locations can lead
to different boundary confined effects on phonon transport.
Phonons originating within the media undergo more boundary-
scatterings than these emitting from the heat sinks at the
boundaries, and the mean free path (MFP) in the IHS scheme can
be more confined by the boundaries than in the TD scheme [13].
According to the kinetic theory [2], the effective thermal conduc-
tivity is proportional to the boundary-confined MFP. Therefore,
the effective thermal conductivity in the IHS scheme is signifi-
cantly lower than that in the TD scheme. Moreover, in the
electronic devices where self-heating does exist, the accurate pre-
diction to the effective thermal conductivity of nanostructures
with internal heat source becomes highly essential. Although the
heat transport in electronic devices has been widely studied
[23,24], the theoretical model for the effective thermal conductiv-
ity of the nanostructures with internal heat source is still lacking.
Therefore the size-dependent behavior of the effective thermal
conductivity in the nanostructures with internal heat source still
remains poorly understood, and the predictive model is highly
desired.

In the present work, the effective thermal conductivity of the
nanostructures (including nanofilms and nanowires) with internal
heat source is studied. A Monte Carlo (MC) technique is applied to
simulate the phonon transport. It is found that the effective
thermal conductivity in the IHS scheme is significantly lower than
that in the TD scheme. The predictive models for the effective
thermal conductivity of the nanostructures with internal heat
source are derived based on the phonon BTE and the Matthiessen’s
rule. Moreover, the diffusive heat conduction equation with the
effective thermal conductivity is applied to characterize the tem-
perature distributions in the nanostructures with internal heat
source.

2. Analyses and simulation details

2.1. Internal heat source (IHS) scheme

The IHS scheme is illustrated in Fig. 1(a.1)–(c.1). A steady-state
uniform internal heat source _S is introduced in the nanostructures
in contact with two heat sinks of the reference temperature T0. The
cross sectional boundaries are adiabatic. Therefore, in the diffusive
limit, the heat conduction can be regarded as one-dimensional, and
the temperature profile is derived from the Fourier’s law,

TðxÞ ¼
_S
2k

ðLx � xÞxþ T0; ð2Þ
where Lx is the distance between the two heat sinks, and k is the
thermal conductivity. Particularly, for the in-plane nanofilms as
shown in Fig. 1(b.1) and the nanowires as shown in Fig. 1(c.1),
the temperature T(x) is averaged in the cross-section area. The
effective thermal conductivity is then extracted from the mean
temperature increase D�T of the nanostructures

kI ¼ L2x _S

12DT
; ð3Þ

with

DT ¼ 1
Lx

Z
Lx

Tdx� T0: ð4Þ



Fig. 1. Schematics of ballistic–diffusive heat conduction in nanostructures: (a.1) nanofilms (cross-plane, IHS); (a.2) nanofilms (cross-plane, TD); (b.1) nanofilms (in-plane,
IHS); (b.2) nanofilms (in-plane, TD); (c.1) nanowires (IHS); (c.2) nanowires (TD).
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2.2. Temperature difference (TD) scheme

In the TD scheme as shown in Fig. 1(a.2)–(c.2), each nanostruc-
ture is in contact with two heat sinks of different temperatures
(T1 and T0), and the temperature difference is DT ¼ T1 � T0

resulting in an x-directional heat flux q. Using the Fourier’s law,
the effective thermal conductivity is calculated

kT ¼ qLx
DT

: ð5Þ

As for the in-plane heat conduction nanofilms as shown in Fig. 1
(b.2) and the nanowires as shown in Fig. 1(c.2), the heat flux, q, is
averaged in the cross-section area.

2.3. Monte Carlo technique

A MC technique [25–27] is applied to simulate the phonon
transport in the silicon nanostructures. The gray media approxima-
tion is employed for the phonon properties of silicon, and it
assumes that the phonon properties are frequency-independent.
Therefore phonons travel with one group velocity and the
scattering rate is described by the phonon MFP. The phonon MFP
is calculated as l ¼ 3kbulk=ðqcVvgÞ, where kbulk is the bulk thermal
conductivity, cV is the volumetric specific heat, q is the mass den-
sity, and vg is the average group velocity. As for silicon at room
temperature, kbulk is 150 W/(m K), cV is 700 J/(kg K), q is 2330 kg/
m3, and vg is 6400 m/s. Thus, the phonon MFP is about 43.7 nm.
Arguments still exist on the value of the phonon MFP of silicon
at room temperature. Based on a more detailed dispersion model
and only considering acoustic phonons that carry most of heat,
the MFP of silicon is ranging from 200 nm to 300 nm [28,29].
However, when the longer MFP based on the dispersion model is
chosen, the corresponding heat capacity and group velocity should
also be chosen. Here, the MFP is chosen as 43.7 nm with its corre-
sponding specific heat and average group velocity. In fact, since all
the quantities in the MC simulations and the models are dimen-
sionless, the choice of the MFP does not influence the comparisons
between them.

The MC technique is a well-developed tool for phonon heat con-
duction simulations. It simulates phonon transport processes by
random number samplings, equivalent to directly solving the pho-
non BTE [25–27]. The x-directional boundaries are considered as
phonon black-body, i.e., phonons are completely absorbed at them,
while the lateral boundaries are adiabatic and thephonon-boundary
scattering at them is assumed to be completely diffusive. As for the
cross-plane heat conduction in the nanofilms, the y-directional
constraints are neglected. In contrast, as for the in-plane heat
conduction in the nanofilms, since the x-directional thickness is
much longer than the y-directional thickness, i.e., Lx � Ly, the pho-
non transport is mainly influenced by the y-directional boundary
constraints. Similar to the in-plane heat conduction naofilms, only
the lateral constrain is considered for the long nanowires (L� D),
while both the lateral and axial constraints should be taken into
account for the short nanowires (L � D). For the TDscheme, phonons
with the definite temperature emit from the heat sinks at the
x-directional boundaries. In contrast, for the IHS scheme the internal
heat source is implemented by setting the phonon source inside the
nanostructures, that is, phonons with the definite energy originate
within the nanostructures. Then phonons are traced in the domains
until they exit through the x-directional boundaries, and the
intrinsic scattering processes, such as phonon-impurities and
phonon–phonon scatterings, are treated in the relaxation-time
approximation [26]. The tracing number of phonon bundles is equal
to 108, and the unit control volume is Dx ¼ 0:1Lx.
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3. Effective thermal conductivity of nanofilms with internal
heat source

3.1. Cross-plane effective thermal conductivity of nanofilms

The one-dimensional phonon BTE can be applied to characterize
the cross-plane phonon transport in nanofilms with internal heat
source,

vgx
@f
@x

¼ f 0 � f
s

þ _SX: ð6Þ
Here vgx ¼ vg cosðhÞ, in which h is the angle between the pho-

non traveling direction and the x-direction. The local temperature
and heat flux can be derived from the integral of the distribution
function

GðxÞ ¼ 2p
Z 1

�1
dl
Z

�hxDOSðxÞdxf ; ð7Þ

qðxÞ ¼ 2p
Z 1

�1
ldl

Z
vg�hxDOSðxÞdxf ; ð8Þ

where x is the angle frequency of phonon, �h is the Dirac constant
and DOSðxÞ is the density of states. The function GðxÞ is directly
related to the local temperature T(x),

GðxÞ ¼ 2p
Z 1

�1
dl
Z

�hxDOSðxÞdxf

� TðxÞ 2p
Z 1

�1
dl
Z

�hxDOSðxÞdx @f
@T

� �

� TðxÞ 2p
Z 1

�1
dl
Z

�hxDOSðxÞdx @f 0
@T

dx
� �

¼ cVqTðxÞ; ð9Þ

in which cV is the volumetric specific heat and q is the mass density.
When the system is comparable to the mean free path, the local
thermodynamic equilibrium assumption cannot be achieved, and
the temperature will lose its conventional meaning of representing
a thermal equilibrium state [28]. In this case the temperature
defined in Eq. (9) is a representation of the average energy of all
phonons around a local point.

The distribution function can be divided into two parts,
f ¼ f s þ f d, where fs is the source-induced part characterized by
the two-flux approximation [30] and fd is the diffusive part charac-
terized by the differential approximation [31]. The governing equa-
tion of the source-induced part is expressed as,

vgx
@f s
@x

¼ � f s
s
þ _SX: ð10Þ

The two-flux approximation is employed to solve Eq. (10),

� 1
2 l
@f�s
@x

¼ s _SX � f�s ; �1 < l < 0;

1
2 l
@fþs
@x

¼ s _SX � fþs ; 0 < l < þ1;
ð11Þ

in which l ¼ cosðhÞ, l is the mean free path and l ¼ vgs. With the
corresponding boundary conditions: fþs ð0Þ ¼ 0 and f�s ðLxÞ ¼ 0, the
source-induced part can be expressed as,

fþs ðxÞ ¼ s _SX½1� expð�2 x
lÞ�;

f�s ðxÞ ¼ s _SX 1� exp �2 Lx�x
l

� �� �
:

ð12Þ

Thus, Eqs. (7) and (8) can be written as

Gs ¼
_S
2

2� exp �2
x
l

� 	
� exp �2

Lx � x
l


 �� �
; ð13Þ

qs ¼
_S
4

exp �2
Lx � x

l


 �
� exp �2

x
l

� 	� �
; ð14Þ

in which _S ¼ 4p
R
�hxs _SXDðxÞdx.
As for the diffusive part, the governing equation is

vgl
@f d
@x

¼ �f d þ f 0
s

: ð15Þ

The differential approximation assumes that [31]

f d ¼ f ð0Þd þ lf ð1Þd : ð16Þ
Combining Eqs. (15) and (16), we have

Gd ¼ 4p
Z

�hxDðxÞf ddx; ð17Þ

qd ¼ �1
3
lvg

@Gd

@x
; ð18Þ

with the Marshak boundary conditions [31,34]:
Gdð0Þ
4

þ 1
2
qdð0Þ ¼ 0;

GdðLxÞ
4

� 1
2
qdðLxÞ ¼ 0:

ð19Þ

How to select the boundary condition is an important issue for the
ballistic–diffusive heat conduction. For the equationof phonon radia-
tive heat transfer Joshi and Majumdar [32] proposed the boundary
condition in the form of the phonon intensity which is much similar
to that applied in the heat radiation, while in the ballistic–diffusive
equations Chen [31,34] obtained the Marshak boundary condition.
Besides, Alvarez and Jou [33] introduced a boundary thermal
resistance to deal with this issue. According to Refs. [34,35], since
the boundarydoes not contribute to the diffusive component, the dif-
fusive heat flux at the boundary is onlymade of the incident diffusive
carriers. Then, theMarshakboundaryconditionwidelyadopted in the
heat radiation andneutron transport can be deduced via the differen-
tial approximation [34]. In present work, theMarshak boundary con-
dition, Eq. (19), is chosen for thediffusive component. A similar choice
was made in Ofle’s work [35] where a heat radiation problem was
solved by the splitting method. The ballistic transport leads to the
temperature jumps at the x-directional boundaries [26], which can
be characterized by Eq. (19).

According to the energy conservation equation, @q=@x ¼ _S, we
have

@q
@x

¼ @qs

@x
þ @qd

@x
¼ @qs

@x
� 1
3
lvg

@2Gd

@x2
¼ _S: ð20Þ

Combining Eqs. (14), (19) and (20), the expression of Gd is
obtained,

GdðxÞ ¼ 3s
8

_S exp �2
Lx � x

l


 �
þ exp �2

x
l

� 	� �
� 3s

2
_S
x
l

� 	2

þ 3s
2

_S
Lx
l
x
l
� 7s

8
_Sþ s

8
_S exp �2

Lx
l


 �
þ s _S Lx

l
: ð21Þ

Thus, we obtain

GðxÞ ¼ Gd þ Gs

¼ �
_Ss
8

exp �2
Lx � x

l


 �
þ exp �2

x
l

� 	� �

þ
_Ss
8

1þ exp �2
Lx
l


 �� �
þ 3 _Ss

2l2
ðLx � xÞxþ Lx

l
_Ss ð22Þ

Referring to Eq. (9), the temperature distribution function is
derived from Eq. (22),

T�
Knx ðgÞ ¼

T � T0

ð _SL2x=8kbulkÞ
¼ 4ð1� gÞgþ 8

3
Knx

� Kn2
x

3
exp �2

1� g
Knx


 �
þ exp �2

g
Knx


 �� �

þ Kn2
x

3
1þ exp � 2

Knx


 �� �
ð23Þ
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Fig. 3. Cross-plane effective thermal conductivity of nanofilms vs. Knudsen number
(Knx).
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The temperature profiles of the cross-plane heat conduction in
nanofilms with internal heat source are illustrated in Fig. 2. All
the quantities are converted to dimensionless: the dimensionless
temperature T� is defined as T� ¼ 8kbulkðT � T0Þ=ð _SL2x Þ; the
dimensionless coordinate g is x=Lx; and the Knudsen number Knx
is defined as Knx ¼ l=Lx. As Knx ¼ 0, the dimensionless temperature
profile corresponds to the Fourier’s law, namely T�

FðgÞ ¼ 4ð1� gÞg.
The temperature jumps occur at the boundaries and increase with
the increasing Knudsen number Knx. Besides, the dimensionless
temperature increases with the increasing Knx, indicative of the
reduction of the effective thermal conductivity. It is found that
Eq. (23) can well predict the temperature distributions obtained
by the MC simulations in the regime of small Knudsen number,
while in the regime of large Knudsen number, owing to the
violation of the differential approximation, the present model
underestimates the temperature increases.

Furthermore, combining Eqs. (3) and (23) yields the model for
the cross-plane effective thermal conductivity in the IHS scheme,

kI film cr

kbulk
¼ 1

1þ 4Knx þ Kn2x
2 1þ exp � 2

Knx

� 	h i
þ Kn3x

2 exp � 2
Knx

� 	
� 1

h i ;
ð24Þ

with kbulk ¼ qcV lvg=3. Majumdar [36] proposed the gray model for
the cross-plane effective thermal conductivity of nanofilms in the
TD scheme,

kT film cr

kbulk
¼ 1

1þ 4
3Knx

: ð25Þ

In the regime of small Knudsen number, the high order terms of
Knx in Eq. (24) can be neglected, and it reduces to kI film cr=kbulk �
1=ð1þ 4KnxÞ, which holds the same form as the gray model, i.e.
Eq. (25).

Fig. 3 shows the cross-plane effective thermal conductivity of
nanofilms. The effective thermal conductivity decreases with the
increase of the Knudsen number Knx in both the IHS and TD
schemes, while the effective thermal conductivity kI film cr in the
IHS scheme is significantly lower than kT film cr in the TD scheme.
Besides, the present model for kI film cr , Eq. (24), agrees with the
MC simulations, especially in the regime of small Knudsen number.
However, as the Knudsen number increases, Eq. (24) slightly
over-predicts the effective thermal conductivity.
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3.2. In-plane effective thermal conductivity of nanofilms

The two-dimensional phonon BTE is employed to characterize
the in-plane phonon transport in nanofilms,

vgx
@f
@x

þ vgy
@f
@y

¼ f 0 � f
s

þ _SX: ð26Þ

It is hard to derive an analytical model of the effective thermal
conductivity directly from Eq. (26). Nevertheless, when the source
term vanishes, Eq. (26) reduces to the governing equation in the TD
scheme. The in-plane effective thermal conductivity model in the
TD scheme has been derived [22]

kT film in

kbulk
¼ 1� 3

2
Kny

Z p=2

0
1� exp � 1

cosðhÞKny


 �� �
sin3ðhÞd sinðhÞ;

ð27Þ

in which Kny ¼ l=Ly. It is noted that Eq. (27) can be approximately
simplified as, kT film in=kbulk � 1=ð1þ 3=8KnyÞ [10]. Referring to the
Matthiessen’s rule, we may conclude that the models of the effec-
tive thermal conductivity are in the same form, keff =kbulk ¼
1=ð1þ aKnÞ, in which the parameter, a, reflects the size effects
0.8 1.0
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x
 = 0.0 : 

 Fourier's law
Kn

x
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 Model Eq.(23)
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 MC
 Model Eq.(23)

Kn
x
 = 0.5  :

 MC
 Model Eq.(23)

nate

onduction in nanofilms with internal heat source.



1000 Y.-C. Hua, B.-Y. Cao / International Journal of Heat and Mass Transfer 92 (2016) 995–1003
under the different conditions. Hence, the form of in-plane effective
thermal conductivity model in the IHS scheme is expressed as

kI film in

kbulk
¼ 1

1þ aI film inKny
; ð28Þ

in which the parameter aI film in can be obtained by the best fitting
with the MC simulations. Fig. 4 illustrates the in-plane effective
thermal conductivity of nanofilms varied with the Knudsen number
(Kny). It is found that the effective thermal conductivity decreases
with the increase of Kny in both the TD and IHS schemes, while
the effective thermal conductivity in the IHS scheme is lower than
that in the TD scheme. The parameter aI film in for the in-plane effec-
tive thermal conductivity in the IHS scheme is equal to 0.65, calcu-
lated by the best fitting with the MC simulations in Fig. 5, and it is
larger than the parameter, aT film in ¼ 3=8, in the TD scheme.

Furthermore, the temperature distributions are characterized
by the diffusive heat conduction equation with the effective ther-
mal conductivity, kI in,

kI film inðKnyÞ @
2T

@2x
þ _S ¼ 0: ð29Þ
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In terms of Eq. (29), the function of the dimensionless temper-
ature distributions within the nanofilms is

T�
Kny ðgÞ ¼ 4ð1þ aI film inKnyÞð1� gÞg: ð30Þ
The dimensionless temperature distributions within the in-

plane nanofilms with internal heat source are illustrated in Fig. 5.
With the increase of Kny, owing to the y-directional boundary scat-
tering, the dimensionless temperature increases as compared to
T�
FðgÞ ¼ 4ð1� gÞg. Since the temperature distributions still keep

the parabolic form and no significant temperature jump occurs at
the x-directional boundaries, Eq. (30) can well predict the temper-
ature distributions calculated by the MC simulations.
4. Effective thermal conductivity of nanowires with internal
heat source

4.1. Effective thermal conductivity of long nanowires

Firstly, we consider the long nanowires in which the influence
of the axial constraints can be neglected, and the effective thermal
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conductivity only depends on the diameter (D) of the nanowires.
The corresponding Knudsen number, KnD, is then defined as
KnD ¼ l=D. Similar to the in-plane effective thermal conductivity
of the nanofilms, the model for the long nanowires with internal
heat source is in the form of

kI wire

kbulk
¼ 1

1þ aI wire DKnD
; ð31Þ

where aI wire D cen be obtained by the best fitting with the MC sim-
ulations. As a comparison, the model in the TD scheme is derived
from the phonon BTE without internal heat source [8],

kT wire

kbulk
¼ 1� 3

p

Z 1

0
rdr
Z 2p

0

Z 1

0

	 exp � 1
2KnD

sinðu� arc sinðr sinðuÞÞÞ
sinðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
 !

l2dldu;

ð32Þ
which can be approximately simplified as, kT wire=kbulk � 1=
ð1þ 3=4KnDÞ [10].

Fig. 6 shows the effective thermal conductivity of the long
nanowires varied with the Knudsen number (KnD). Eq. (32) well
agrees with our MC simulations in the TD scheme. The parameter,
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aI wire D, in the IHS scheme is calculated as 1.26, larger than the
parameter, aT wire D ¼ 3=4, in the TD scheme. Besides, the effective
thermal conductivity decreases with the increase of KnD in both the
above schemes, while the effective thermal conductivity, kI wire, in
the IHS scheme is significantly lower than kT wire in the TD scheme.

The diffusive heat conduction equation with the effective
thermal conductivity is applied to characterize the temperature
distributions in the long nanowires with internal heat source,

T�
KnD

ðgÞ ¼ 4ð1þ aI wireKnyÞð1� gÞg: ð33Þ
Fig. 7 shows the dimensionless temperature distributions

within the long nanowires with internal heat source. It is found
that the temperature increases as compared to that predicted by
the Fourier’s law, though it still holds the parabolic form and no
significant boundary temperature jump occurs. Therefore, Eq.
(33) can well agree with the MC simulations.
4.2. Effective thermal conductivity of short nanowires

When the influence of the axial constraints cannot be neglected,
the effective thermal conductivity of the short nanowires
depends on both the diameter D and the length L. Referring to
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Table 1
Parameters for effective thermal conductivity models.

The TD scheme The IHS scheme

Nanofilm Cross-plane 4/3 4
In-plane 3/8 0.65

Nanowire Diameter dependence 3/4 1.26
Length dependence 4/3 5.78
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the Matthiessen’s rule, the corresponding effective thermal
conductivity model for the short nanowires may be expressed as

kI wire

kbulk
¼ 1

1þ aI wire DKnD þ aI wire LKnL
: ð34Þ

Here aI wire D ¼ 1:26 which is obtained in Section 4.1 for the long
nanowires, and the parameter aI wire L is obtained by the best fitting
with the MC simulations in Fig. 8. Besides, in the TD scheme, the
effective thermal conductivity model of the short nanowires is [37]

kT wire

kbulk
¼ 1

4
3KnL þ 1� 3

p

R 1
0 rdr

R 2p
0

R 1
0 exp � sinðu�arcsinðr sinðuÞÞÞ

2KnD sinðuÞ
ffiffiffiffiffiffiffiffiffi
1�l2

p

 �

l2dldu

 ��1 :

ð35Þ
Fig. 8 shows the effective thermal conductivity of short nano-

wires. Eq. (35) well predicts the effective thermal conductivity cal-
culated by the MC simulations in the TD scheme. The parameter,
aI wire L, in the IHS scheme is calculated as 5.78. In addition, the
effective thermal conductivity of short nanowires is lower than
that of long nanowires, owing to the influence of axial constraints.
With the increase of length, the effective thermal conductivity
increases. Besides, like the long nanowires, the effective thermal
conductivity of short nanowires in the IHS scheme is also signifi-
cantly lower than that in the TD scheme.

The diffusive heat conduction equation with the effective ther-
mal conductivity of the short nanowires is expressed as

T�
ðKnD ;KnLÞðgÞ ¼ 4ð1þ aI wire DKnD þ aI wire LKnLÞð1� gÞg: ð36Þ
As shown in Fig. 9, in the regime of large KnL, owing to the influ-

ence of the x-directional constraints, the temperature distributions
within the short nanowires calculated by the MC simulations sig-
nificantly deviate from the parabolic form and the temperature
jumps occur at the boundaries. Hence different from the long
nanowires, Eq. (36) cannot well predict the temperature distribu-
tions within the short nanowires in the regime of large KnL.
5. Conclusions

We have studied the effective thermal conductivity of nanos-
tructures (including nanofilms and nanowires) with internal heat
source. A Monte Carlo technique is applied to simulate the phonon
transport in the nanostructures. It is found that the effective ther-
mal conductivity of nanostructures with internal heat source is sig-
nificantly lower than that with temperature difference, though it
still increases with the increasing characteristic length.

The models of the effective thermal conductivity and the tem-
perature distribution for the cross-plane nanofilm heat conduction
with internal heat source are directly derived from the phonon
Boltzmann transport equation, and the comparisons with the
Monte Carlo simulations well confirm their validities.

Referring to the Matthiessen’s rule, the models for the effective
thermal conductivity of nanofilms and nanowires can be simplified
as the unified form of, keff =kbulk ¼ 1=ð1þ aKnÞ. Particularly for short
nanowires, the effective thermal conductivity model is expressed
as keff=kbulk ¼ 1=ð1þ aLKnL þ aDKnDÞ, taking into account the multi-
ple constraints. The parameters for the different geometries in both
the TD and IHS schemes are illustrated in Table 1.

The diffusive heat conduction equation with the effective ther-
mal conductivity is applied to characterize the temperature distri-
butions within the nanofilms and nanowires, kI eff ðKnÞ@2T=@2xþ
_S ¼ 0. As for the in-plane nanofilms and long nanowires, the above
equation can well predict the temperature distributions. However,
as for the short nanowires in which the axial constraints cannot be
neglected, since the temperature distributions deviate from the
parabolic form and the temperature jumps occur at the x-
directional boundaries, the above equation fails to predict the tem-
perature distributions.
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