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Ballistic-diffusive heat conduction in multiply-constrained nanostructures is theoretically studied based
on the phonon Boltzmann transport equation. The results show that different constraints influence the
thermal transport in different ways. In the direction parallel to the heat flow, the phonon ballistic
transport can cause temperature jumps at the boundaries in contact with the phonon baths. In contrast,
for lateral constraint, the heat flux is reduced near the boundaries due to phonon-boundary scattering. A
thermal conductivity model for multiply-constrained nanostructures is then derived from the phonon
Boltzmann transport equation. The influences of different constraints are combined on the basis of
Matthiessen's rule. The model accurately characterizes the thermal conductivities of various typical
nanostructures, including nanofilms (in-plane and cross-plane) and finite length nanowires of various
cross-sectional shapes (e.g. circular and rectangular). The model predictions also agree well with Monte
Carlo simulations and experimental data for silicon nanofilms and nanowires.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The rapid development of nanotechnologies necessitates an in-
depth understanding of nanoscale thermal transport [1]. At the
macroscale, the transport in the diffusive limit corresponds to the
classical Fourier's law, q ¼ �kVT, where q is the heat flux, T is the
temperature and k represents the thermal conductivity which is an
important intrinsic property of all materials. For nanomaterials in
which the heat carrier mean free path (MFP) is comparable to the
characteristic length, the ballistic transport and boundary scat-
tering make the thermal conductivity dependent on the nano-
structure geometry and size, indicating a violation of Fourier's law
[2e11]. The presence of both diffusive and ballistic transport
mechanisms leads to ballistic-diffusive heat conduction [12]. The
interest in the size-dependent thermal conductivity of semi-
conductor nanostructures in the ballistic-diffusive regime has been
growing owing to their many applications in electronics and pho-
tonics [1].

For semiconductor materials (e.g. silicon), phonons dominate
the thermal transport. In the ballistic-diffusive regime, phonon
ua), caoby@tsinghua.edu.cn

served.
transport is characterized by the phonon Boltzmann transport
equation (BTE) with a relaxation time approximation

vg$Vf ¼ f0 � f
t

; (1)

in which f is the phonon distribution function, f0 is the equilibrium
distribution function, vg is the phonon group velocity and t is the
relaxation time. The influence of the boundaries is not directly seen
in Eq. (1) but is seen in the imposed boundary conditions, with
different boundary conditions having different influences on the
thermal transport. Theoretical studies of the size-dependent ther-
mal conductivity have been conducted especially for nano-
structures with only simple boundary constraints, such as
nanoflims (in-plane or cross-plane) [13e16] and nanowires with
particular cross sectional shapes and infinite lengths [17e19]. En-
gineering systems generally have more than one constraint on the
nanostructures, e.g. finite length nanowires used in experiments
[20,21]. The experiments of Chen et al. [20] showed that the ther-
mal conductivities of silicon nanowires were mainly dependent on
the diameter, since the nanowires were several microns long. In
contrast, the experiments of Hsiao et al. [21] demonstrated that the
thermal conductivities of silicon-germanium nanowires were
strongly correlated with the length but not the diameter. Although
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Alvarez and Jou [15,22] proposed a model considering multiple
constraints by introducing an effective characteristic length, the
influences of the different constraints on the thermal transport
were not identified in their model. The size and geometry depen-
dence of the thermal conductivity in multiply-constrained nano-
structures is still poorly understood and a general characterization
of their thermal conductivities is needed. Present work theoreti-
cally studies the ballistic-diffusive heat conduction in multiply-
constrained nanostructures based on the phonon BTE. The in-
fluences of different constraints on the thermal transport have been
clarified and a phonon thermal conductivity model is given for
multiply-constrained nanostructures. The model characterizes the
thermal conductivities of various typical nanostructures, including
nanofilms (in-plane and cross-plane) and finite length nanowires of
arbitrary cross-sectional shapes.
2. Thermal conductivity model of multiply-constrained
nanostructures

Fig. 1 shows a representative geometry of multiply-constrained
nanostructure. This geometry can reduce to other typical nano-
structures, including nanofilms (cross-plane and in-plane) and
nanowires with varied cross sections. The left and right sides are in
contact with the hot (T1) and cold (T2) phonon baths. The heat flux,
q, caused by the temperature difference is along the x-direction.
The length in this direction is denoted by Lx. The lateral boundaries
are adiabatic and the phonons scatter at them with a specular
scattering rate p. The thermal conductivity is related to both the
longitudinal length, Lx, and the size and geometry of the cross
section.

The thermal conductivity of the multiply-constrained system
can be calculated by solving the phonon BTE. However, an analyt-
ical solution of the phonon BTE is rather difficult to obtain when
simultaneously considering all the constraints. Another way to
solve this complicated problem is to deal with the constraints
separately. Their effects on the thermal conductivity are then
combined based onMatthiessen's rule. In the longitudinal direction
(x-direction) parallel to the heat flow, the ballistic transport of the
phonons can cause temperature jumps at the boundaries [23],
which will reduce the thermal conductivity, while for the lateral
constraint, the phonon-boundary scattering reduces the heat flux
near the boundaries which reduces the thermal conductivity.
Therefore, different methods should be used for different
constraints.
2.1. Longitudinal constraint

First consider the longitudinal constraint. The corresponding
one-dimensional BTE is,
Fig. 1. Representative geometry of a multiply-constrained nanostructure (a). It can
typically reduce to: (b) a nanofilm (cross-plane), (c) a nanofilm (in-plane), (d) a circular
nanowire, and (e) a rectangular nanowire.
ml0
vf
vx

¼ f0 � f ; (2)

where m ¼ cos(q) in which q is the polar angle between the phonon
motion direction and the x-axis and l0 is the bulk MFP equal to vgt.
For this case, Majumdar [13] proposed the gray model based on the
differential approximation, but it is invalid for large Knudsen
number. Here, the gray model was improved by dividing the dis-
tribution function into two parts, f ¼ fb þ fd, where fb is the ballistic
part directly originating from the boundaries and fd is the diffusive
part described by the differential approximation. This methodology
was first proposed by Ofle [24] for calculating radiation heat
transfer and Chen [12] then applied it to model transient ballistic-
diffusive heat conduction.

The ballistic distribution function is given by,

ml0
vfb
vx

¼ �fb: (3)

The ballistic heat flux, qb, is then,

qb ¼ 2p

2
4Z1

0

exp
�
� x
ml0

�
mdmIw1 �

Z1
0

exp
�
� Lx � x

ml0

�
mdmIw2

3
5

(4)

with

Iw1 ¼ εI01 þ 2ð1� εÞ
Z1
0

exp
�
� Lx
ml0

�
mdmIw2; (5)

Iw2 ¼ εI02 þ 2ð1� εÞ
Z1
0

exp
�
� Lx
ml0

�
mdmIw1; (6)

in which ε is the phonon emissivity, I01 ¼ R vgZuf0ðT1ÞDOSðuÞdu ¼
rcvvgT1=ð4pÞ and I02 ¼ R vgZuf0ðT2ÞDOSðuÞdu ¼ rcvvgT2=ð4pÞ
where DOS(u) is the density of states, cv is the volumetric specific
heat and r is the mass density. For convenience, define the expo-
nential integral function EnðtÞ ¼

R 1
0 expð�t=mÞmn�2dm and the bal-

listic heat flux as,

qb ¼ 2p
�
Iw1E3

�
x
l0

�
� Iw2E3

�
Lx � x
l0

��
: (7)

The diffusive distribution function is governed by,

ml0
vfd
vx

¼ f0 � fd: (8)

The differential approximation of Eq. (8) yields

qd ¼ q� qb ¼ 1
3
rcvvgl0

vTd
vx

; (9)

with the Marshak boundary conditions [25].

Tdð0Þ �
4l0
3

�
1
ε

� 1
2

�
vTdð0Þ
vx

¼ 0; (10)

TdðLxÞ þ
4l0
3

�
1
ε

� 1
2

�
vTdðLxÞ

vx
¼ 0; (11)

in which qd is the diffusive heat flux and Td is defined as
Td ¼ 2p

rcvvg

R 1
�1 dm

R
ZuvgfdDOSðuÞdu. The boundary conditions
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chosen for the diffusive component are called the Marshak
boundary conditions, which have been widely adopted in the heat
radiation and neutron transport [25]. Since the boundary does not
contribute to the diffusive component, the diffusive heat flux at the
boundary is only made of the incident diffusive carriers. Then, the
Marshak boundary condition can be deduced by the differential
approximation [25]. The similar boundary conditions were used in
Ofle's work [24] where a heat radiation problem was solved by the
splitting method. These boundary conditions characterize the
boundary temperature jump caused by the ballistic transport.

The effective temperature, T(x), which is a representation of the
average energy of all phonons around a local point, is defined as
TðxÞ ¼ 2p

rcvvg

R 1
�1 dm

R
Zuvgf ðxÞDOSðuÞdu. These equations are com-

bined with the energy conservation equation, vq/vx ¼ 0, to give the
temperature profile,
TðxÞ ¼
2

2
4qbð0Þ � q� � 3q

l0
xþ 3

l0

Z x

0
qbdxþ 2p

�
Iw1E2

�
x
l0

�
� Iw2E2

�
Lx � x
l0

�35
rcvvg

; (12)
in which the heat flux, q, is

q ¼ rvgcvl0ðT1 � T2Þ
3Lx

1
ε
þ
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ε
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� 3
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���

1
ε
þ 2

�
1
ε
� 1

�
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(13)

Using Fourier's law, the longitudinal constrained thermal con-
ductivity is,

kx ¼ kbulk
F

; (14)

where kbulk ¼ rcvvgl0/3 and F is

F ¼

�
1þ 4l0

3Lx

�
2
ε
� 1

���
1
ε
þ 2
�
1
ε
� 1
�
E3

�
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l0

��
1
ε
þ
�
2
ε
� 1
�
E3

�
Lx
l0

�
� 3

2 E4

�
Lx
l0

� : (15)

Eq. (14) can be rewritten into the form of Matthiessen's rule as
kx/kbulk ¼ (1 þ l0/lx)�1. The longitudinal constrained MFP, lx, is

lx ¼ l0
F � 1

: (16)
G�1 ¼ 1� 3
4pS
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2.2. Lateral constraint

The corresponding phonon BTE for the lateral constraint [17] is,

vgx
vf0
vT

vT
vx

þ vgy
vf1
vy

þ vgz
vf1
vz

¼ �f1
t
; (17)

where f1 ¼ f�f0. In Eq. (17), the influence of longitudinal constraint
is neglected, so vf1/vx vanishes. Moreover, there is no temperature
gradient in the y- and z-directions. Eq. (17) can be solved using the
methodology developed to calculate the size-dependent electrical
conductivity [2]. Phonon scattering at the boundaries with specular
scattering rate p corresponds to the boundary condition [2],
f1ðyB; zBÞvn ¼ pf1ðyB; zBÞ�vn

, where the planar vector rB(yB,zB) de-
scribes the lateral boundary profile. Thus, Eq. (17) has the following
solution

f1 ¼ vgxt
vf0
vT

vT
vx

2
66664
ð1� pÞexp

0
B@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðy�yBÞ2þðz�zBÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
v2gyþv2gz

p
t

1
CA

� 1

3
77775: (18)

The heat flux along the x-direction can be calculated as,

qxðy; zÞ ¼
Z

DOSðuÞdu
Z1
�1

Z2p
0

vguZf1mdmd4; (19)

in which 4 is the azimuth angle. According to Eq. (18), the heat flux
qx decreases near the boundaries due to the phonon-boundary
scattering. The heat flow can be calculated as Qx ¼

R
S
qxðy; zÞdS,

where S is the cross sectional area. Using Fourier's law, the thermal
conductivity is then,

kc ¼ kbulk
G

; (20)

with
: (21)
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Eq. (20) can also be rewritten into the form of Matthiessen's rule
as kc/kbulk ¼ (1 þ l0/lc)�1 with the lateral constrained MFP, lc, as

lc ¼ l0
G� 1

: (22)
2.3. Combination of different constraint influences

The confined MFP resulting from the longitudinal and lateral
constraints can be obtained based on Matthiessen's rule,

lt ¼ 1
l�1
0 þ l�1

x þ l�1
c

: (23)

The system thermal conductivity shown in Fig. 1 is calculated as
keff ¼ rcvvglt/3, in which the mass density, the specific heat and the
group velocity are assumed to be the same as in the bulk material
[26]. Hence, the ratio of the size-dependent thermal conductivity to
the bulk value is,

keff
kbulk

¼ lt
l0

¼ 1
1þ l0=lx þ l0=lc

: (24)

A thermal conductivity model in the form of Eq. (24) is,

keff
kbulk

¼ 1
F þ G� 1

; (25)

where G is a general term related to the arbitrary cross sectional
shape. The expressions of G for the lateral constraints in nanofilms
and in circular and rectangular nanowires with diffusively scat-
tering lateral boundaries (p ¼ 0) are [2,17,27],

G�1
inp ¼ 1� 3l0

2Ly

Z1
0

 
1� exp

 
� Lyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
p

l0

!!
m3dm; (26)
G�1
cir ¼ 1� 12
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ZD=2
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rdr
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0
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!
m2dmd4; (27)

G�1
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exp

 
z

cosð4Þ
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p
l0
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3
75m2dm;

3
75 (28)
where Ly in Eq. (26) is the nanofilm thickness, D in Eq. (27) is the
circular nanowire diameter, Lz and Ly in Eq. (28) are the width and
height of a rectangular nanowire, f1 ¼ arctan½ðLy � yÞ=ðLz � zÞ�,
f2 ¼ p=2þ arctan½z=ðLy � yÞ�, and f3 ¼ pþ arctanðy=zÞ. Substitut-
ing Ginp into Eq. (25) yields a thermal conductivity model for
nanofilms with finite length and thickness, while combining Gcir

and Grec with Eq. (25) leads to the models for finite length circular
and rectangular nanowires.

Thismodel can be easily extended to take the phonon dispersion
into account. When considering the size-dependence of the ther-
mal conductivity at room temperature, the contribution of
momentum-conserving collisions (normal scattering) can be
assumed to be negligible, especially for semiconductors [11].
Therefore the standard relaxation time approximation model
[28e31] can be used,

keff ¼
1
3

X
j

Zumj

0

Zu
vf0ðu; TÞ

vT
vgjðuÞltjðu; TÞDOSjðuÞdu; (29)

with ltjðu; TÞ ¼ l0jðu; TÞ=½Fðl0jÞ þ Gðl0jÞ � 1�, in which l0j is the
intrinsic phonon MFP of frequency u and polarization j, and the
modified MFP, ltj, reflects the influence of the multiple constraints.

3. Model verification

AMonte Carlo (MC) technique [23,32] was used to directly solve
the phonon BTE. The MC technique is a well-developed tool for
phonon heat conduction simulations. It simulates phonon trans-
port processes by random number samplings, equivalent to directly
solving the phonon BTE. In the MC simulations, phonons start from
the heat sinks and are traced in the domains until they exit through
the x-directional boundaries. The intrinsic scattering processes,
such as phonon-impurities and phononephonon scatterings, are
treated in the relaxation-time approximation. The Knudsen
numbers were defined as Knx ¼ l0/Lx, Kny ¼ l0/Ly, Knz ¼ l0/Lz and
KnD ¼ l0/D.

Fig. 2 compares the heat flux distributions and temperature
profiles obtained from the analytical solutions and the MC simu-
lations. The results in Fig. 2 (a) considered only the longitudinal
constraint and the phonon emissivity ε was set to 1.0. Eq. (12) was
used to characterized the temperature profiles. The boundary
temperature jumps due to the ballistic transport increase as Knx
increases [23]. The predictions of Eq. (12) agree well with the MC
simulations. Fig. 2 (b) compares the heat flux distributions in
nanofilms (in-plane) predicted by the analytical solution and the
MC simulations. The specular scattering rate, p, was set to 0.0. Eq.
(19) can characterize the heat flux distributions in nanofilms (in-
plane). The heat flux is reduced near boundaries owing to phonon-
boundary scattering, so the heat flux decreases with increasing Kny.



Fig. 3. Thermal conductivities predicted by the current models and the Monte Carlo
simulations: (a) nanofilms, (b) circular nanowires, (c) square nanowires.

Fig. 2. Comparison of the analytical solutions with MC simulations: (a) temperature
profiles, (b) heat flux distributions.
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Eq. (19) accurately predicts the heat flux distributions predicted by
the MC simulations.

Fig. 3 compares the thermal conductivities predicted by the
models and the Monte Carlo simulations. The model by Alvarez and
Jou [22] is also given for comparison. The nanofilm thermal con-
ductivities are illustrated in Fig. 3(a). For a given Knx, the thermal
conductivity decreases with increasing Kny and vice versa. The
present model agree better with the MC simulations than Alvarez
and Jou's model [22], because the effective characteristic length in
Alvarez and Jou's model assumes that the constraints have the
same effect regardless of their different influences on the thermal
conductivity. Although in some cases Alvarez and Jou's model can
slightly deviate from the MC simulations, it is also helpful and
convenient in the practical applications due to its straightforward
physical meaning and simple expression. Fig. 3 (b) and (c) show the
thermal conductivities of circular and square nanowires. The
thermal conductivity size-dependent behavior for the finite length
circular and square nanowires is the same as for the nanofilms. The
agreement between the MC simulations and present model in-
dicates the validity of this model.

The predictions of the present model are compared with avail-
able experimental data for silicon nanostructures [3e9] at room
temperature in Fig. 4. The experimental data was converted to
dimensionless units using a bulk thermal conductivity of 150W/m-
K and a MFP for bulk silicon of 210 nm according to references
[33,26] where the value of bulk silicon MFP at room temperature
varied between 200 nm and 300 nm. It should be noted that ar-
guments still exist for the phonon MFP of silicon at room temper-
ature.When considering both the acoustic and optical phonons, the
MFP is about 43.7 nm [23], while only considering acoustic pho-
nons that carry most of heat, it becomes much longer [26]. In fact,



Fig. 4. Comparison of the thermal conductivities predicted by the present model with
experimental data for silicon nanostructures [3e9]: (a) nanofilms (in-plane), (b)
nanofilms (cross-plane), (c) nanowires.
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since all the quantities in the MC simulations and the models are
dimensionless in Figs. 2 and 3, the choice of the MFP does not in-
fluence the comparisons between them. However, when compared
with the experimental data in Fig. 4, it was found that the longer
phonon MFP is the better choice to characterize the size dependent
behavior of the thermal conductivity [3,26]. When the x-directional
Knudsen number, Knx, is equal to 0, the present model gives the in-
plane thermal conductivity of a nanoflim. The results in Fig. 4(a)
show that the predictions of the present model agree well with the
experimental data and the MC simulations. The slight difference
between the model and experimental data may result from the
choice of the phonon MFP. When the y-directional Knudsen num-
ber, Kny, vanishes, the present model gives the cross-plane thermal
conductivity of the nanofilm. The data in Fig. 4(b) shows that the
model also agree well with the MC simulations, but the experi-
mental data from Hopkins et al. [7] is much lower than the model
predictions. A similar result was also reported by McGaughey et al.
[34]. For long nanowires in which the contribution of the longitu-
dinal (x-direction) constraint can be neglected, the x-directional
Knudsen number, Knx, is equal to 0. The data in Fig. 4(c) shows that
the present model predictions agree well with the MC simulations.
Moreover, the model and the experimental data are also consistent,
for KnD less than 10. For KnD larger than 10, the model over-predicts
the experimental data. Changes in the phonon dispersion will
further reduce of the thermal conductivity [35,36] for nanowire
diameters much smaller than the bulk phonon MFP (KnD > 10.0).

4. Conclusions

Analyses of the ballistic-diffusive heat conduction in multiply-
constrained nanostructures showed that different constraints lead
to different effects on the thermal transport. Phonon ballistic
transport in the heat flow direction can cause temperature jumps at
the boundaries in contact with the phonon baths. The phonon-
boundary scattering due to the lateral constraint will reduce the
heat flux near the boundaries.

An analytical model was derived for the phonon thermal con-
ductivity of multiply-constrained nanostructures from the phonon
BTE with the constraints analyzed separately. A modified differ-
ential approximation method was used for the longitudinal
constraint in the heat flow direction, while the lateral constraint
was characterized by directly solving the phonon BTE. Then, the
effects of the different constraints on thermal conductivity are
combined based on Matthiessen's rule. This model can accurately
predict the thermal conductivities of various nanostructures,
including nanofilms (in-plane and cross-plane) and finite length
nanowires of arbitrary cross-sectional shapes. The model pre-
dictions for finite length and finite thickness nanofilms and finite
length circular and square nanowires are coincident with the MC
simulations. The model predictions also agree well with experi-
mental data for silicon nanofilms and nanowires. It should be noted
that the Matthiessen's rule assumes that the different scattering
progresses are independent. However, this assumption cannot al-
ways be valid [37]. We have combined the multiply phonon-
boundary scattering effects via the Matthiessen's rule, ignoring
the coupling effect. The present model's good agreements with the
MC simulations and the experimental data have demonstrated that
the coupling effect between phonon-boundary scatterings is not
significant for the relatively simple multiply-constrained nano-
structures, such as nanofilms and finite length nanowires. As for
more complex multiply-constrained nanostructures, the present
methodology should be improved to take the coupling effect into
account.
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