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Wide applications of ultra-short pulse laser technique in micromachining and thermophysical

properties’ measurements make the study on ultrafast transient thermal transport necessarily

essential. When the characteristic time is comparable to the phonon relaxation time, phonons

propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon

transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-

Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remark-

able differences exist between the C-V model and the MC simulations when describing the evolution

of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive

dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissi-

pative thermal wave. Besides, different phonon emissions can significantly influence the evolution of

the thermal wave in the MC simulations. A modified C-V model with a time- and position-dependent

effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of

the transport regime from ballistic to diffusive. The integrations on moments of the distribution func-

tion cause the loss of the information of the phonon distribution in wave vector space, making the

macroscopic quantities incomplete when describing the ballistic transport processes and correspond-

ing boundary conditions. Possible boundary conditions for the phonon BTE in practice are also dis-

cussed on different heating methods.VC 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4944646]

I. INTRODUCTION

The ultra-short pulse laser technique has become the

effective tool in micromachining1–4 and thermophysical

property measurements.1,2,5–8 Generally, Fourier’s law of

heat conduction, with feature of diffusion, is the constitutive

equation used for describing the macroscale thermal trans-

port and indicates that heat propagates in diffusive regime.

However, for ultrafast heat conduction, Fourier’s law pre-

dicts an infinite transport speed of the thermal disturbance,

deviating from the experimental results which show that heat

propagates as thermal waves.9,10 For transient heat conduc-

tion in nanofilms where the characteristic length and time are

comparable to the phonon mean free path and the phonon

relaxation time, respectively, phonons propagate also as ther-

mal waves in the ballistic-diffusive regime.11

Studies on thermal waves are mainly focused on theoret-

ical modeling and simulations due to the difficulty in

experimental research. In the past decades, several phenome-

nological models have been proposed. A hyperbolic heat

conduction equation which predicts the wave propagation of

the heat pulse was obtained by combining the energy conser-

vation equation and the C-V model proposed by Cattaneo

and Vermotte.12,13 Joseph and Preziosi extended the C-V

model with a Jefferys type relaxation integral kernel.9 Tzou

proposed a dual-phase-lagging model considering the mutual

delay between heat flux and temperature gradient.10

Recently, Majumdar14 and Chen15 derived the phonon radia-

tion transport equation and the ballistic-diffusive heat con-

duction equation, respectively, as the substitutes of the

phonon Boltzmann transport equation (BTE) in describing

the nanoscale transient heat conduction. Guo et al. studied
the thermal wave based on the thermomass model.16–18

Ordonez-Miranda et al. presented a constitutive equation of

the heat flux and temperature with the exact solutions of the

phonon BTE.19 Besides, simulation approaches, including

molecular dynamics (MD) simulation, Monte Carlo (MC)

simulation, and lattice Boltzmann method (LBM), are also

used for thermal wave research. Tsai and MacDonald per-

formed the MD simulations on the transient propagation of

the heat pulse in body-centered-cubic crystal at high temper-

ature and found that the energy propagates in the form of

wave attached to the diffusive backgrounds.20 Kim et al.
investigated the propagation of the heat pulse in multiwall

carbon nanotube using the MD simulation.21 Yao and Cao

first studied the propagation of the heat pulse in graphene by

MD simulations and indicated that the heat pulse propagates

in ballistic-diffusive regime.22 Xu and Wang developed a

LBM scheme with which he studied the ultrafast process of

the pico- and femto-second pulse laser heating process in

single-crystal silicon and pointed out that the parabolic equa-

tion and the hyperbolic equation are neither applicable to the

ballistic condition due to the failure of the continuum and

local equilibrium approximation.23 While it is difficult to

solve the BTE at transient condition directly, Hua et al.
solved the BTE by MC technique to study the transient
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condition in nanofilm and concluded that the thermal disturb-

ance propagates with finite speed and the thermal wave is

related to the ballistic transport.24

Theoretically, the thermal wave is often involved in sec-

ond sound25–31 dominated by phonon normal scatterings (N

scatterings) and ballistic thermal wave24,32–34 dominated by

phonon ballistic transport, which is not distinguished in theo-

retical modeling works.9,10,12,13,16–18 For the generation of

second sound, it is required that sN � t � sR to make sure

of enough N scatterings and avoid the momentum loss

caused by resistive scatterings (R scatterings), where t is the
characteristic time of thermal transport, sN is the relaxation

time of the N scattering, and sR is the R scattering. Different

from the time window for second sound, t � sR � sN is

required for ballistic thermal wave to avoid scatterings and

make sure that phonons transport in the ballistic regime. In

fact, time conditions of second sound are barely satisfied for

nonmetal materials, such as silicon and germanium. In ultra-

fast thermal transport in nanofilms where the characteristic

length and time in the order of nanometers and picoseconds,

respectively, the ballistic thermal wave occurs.11 While theo-

retical models for ballistic thermal wave are mostly based on

the phonon BTE or have relations with the phonon BTE,

systematic comparative studies on models and the phonon

BTE in describing the phonon wave propagations in

ballistic-diffusive regime are crucial for understanding the

ballistic thermal wave.

Boundary conditions play an important role in phonon

ballistic-diffusive transport. Although there have been

some modifications on macroscopic boundary conditions,35

there is few discussion on boundary conditions of the pho-

non distribution function for the phonon BTE. The equilib-

rium distribution functions at corresponding temperature

are usually chosen to be the microscopic boundary condi-

tions.14,15,19 However, Wilson and Cahill indicated that the

radiative boundary condition is not an accurate description

for interface thermal resistance at ballistic transport.36 An

anisotropic distribution function f ¼ f ðT1Þ � sRvx@f=@x(T1
is the temperature of the phonon source) was set up as the

boundary condition in dealing with the nanoscale interface

transport.11 Boundary conditions of the distribution func-

tion at ultrafast transient transport and their influences on

ballistic transport have not been investigated systemati-

cally yet.

In the present work, we studied the propagation of the

ultra-short heat pulse using the MC simulation and the C-V

model together with theoretical analyses based on the pho-

non BTE with relaxation time approximation (RTA). A

modified C-V model with a time- and position-dependent

effective thermal conductivity (ETC) is derived based on the

phonon BTE to characterize the evolution of the transport

regime from ballistic to diffusive. The failure of the macro-

scopic quantities when describing the ballistic transport and

its boundary conditions is pointed out and proven based on

their definitions and results of the MC simulations. Possible

boundary conditions of distribution function for the phonon

BTE in practice and corresponding emissions in MC simula-

tions are discussed.

II. SIMULATION AND NUMERICAL METHODS

A. Monte Carlo simulation

A Monte Carlo technique,37,38 which directly solves the

phonon BTE by simulating the corresponding physical proc-

esses, is employed to investigate the phonon ballistic-

diffusive transport. As presented in Fig. 1, one-dimensional

transient heat conduction in single-crystal silicon nanofilms

is simulated. The heat pulse propagates along the normal

direction of the boundary (x-direction). There are no confine-

ments in y- and z-directions. Thus, the initial temperature,

T0, is 300K, and a heat pulse with period Dt¼ 2 ps is input

to the left side of the film at t¼ 0. Phonons scatter at the

boundary and are reflected back to the film diffusively. The

phonon-phonon scattering is treated in RTA. Phonons emit

in two different ways: the directional emission (DE) (all

phonons are emitted with the same direction expressed by

the angle h between the emission direction and the boundary

normal direction) and the Lambert emission (LE) (phonons

are emitted with angular distribution based on the Lambert

cosine law). The temperature is calculated based on its rela-

tion with the number of phonons scattered in the correspond-

ing cell (the thin film is divided into 1000 cells uniformly),

and more details of the simulation can be referred to Refs.

24, 37, and 38. The heat flux density at the boundary is set

based on its definition: energy (phonons) transmitting the

specific interface per time and per area. The definition of the

heat flux in MC simulation with LE and DE is

ELE ¼
X3
p¼1

ð
X

ð
x

�hxfvLE cos ðhÞDOSdxdX; (1)

EDE ¼
X3
p¼1

ð
X

ð
x

�hxfvDEDOSdxdX; (2)

FIG. 1. Schemes of the heat pulse and the system of Monte Carlo simulation

for single-crystal silicon nanofilm: (a) sinusoidal heat pulse, (b) rectangle

heat pulse, and (c) simulation system including the regimes of phonon

emission and scattering.
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respectively, where cos ðhÞ corresponds to the Lambert emis-

sion. vLE and vDE are the velocities of phonons when trans-

mitting the interface. The condition ELE ¼ EDE is guaranteed

in our simulations by emitting same phonon bundles (pho-

nons with specific energy) at same time interval. After the

phonon emission, phonons propagate as phonon group

velocity.

Debye approximation is adopted for phonon frequency

spectrum and dispersion relation.38 Phonon polarization and

anisotropy of the crystal structure are not considered. The

phonon group velocity, vq, which is set to be the phonon

velocity in simulation, and the phonon MFP, l, is set to be

5000m/s and 56.2 nm, respectively.11 The phonon relaxation

time is then calculated to be 11.2 ps. The specific heat

capacity, cv, and the density, q, of the bulk material at initial

temperature are used in simulations for the nanofilm. The

film thickness, L, is set to be 120 nm and 1000 nm, respec-

tively, in simulations according to the changes of the charac-

teristic time in research. The role of the opposite boundary is

not considered in this research.

In the present work, we investigate the heat flux pulse

condition which has been widely adopted in experimental

and numerical studies.5–8,16–18,39 As shown in Figs. 1(a) and

1(b), the pulse function are selected to be sinusoidal and rec-

tangle functions, respectively

q1 ¼ qmax � 1

2
1– cos xp0tð Þ� �

; t < t0

0; t � t0;

8<
: (3)

q2 ¼ qmax � 1

2
; t < t0

0; t � t0;

8<
: (4)

where qmax¼ 5� 1011W/m2, t0¼ 2 ps, and xp0¼ 3.14 rad

ps�1 with initial conditions

T ¼ T0; t ¼ 0; 0 � x � L;

q ¼ 0; t ¼ 0; 0 � x � L:
(5)

B. Numerical method for the C-V model

The C-V model

qþ sCV
@q

@t
¼ �k

@T

@x
; (6)

where k is the thermal conductivity and sCV is the relaxation

time, is often used as the alternative constitutive heat con-

duction equation to Fourier’s law at ultrafast condition. In

this text, a numerical computation method is adopted to

solve the one-dimensional C-V equation under the same ini-

tial and boundary conditions with those in MC simulations.

A dimensionless method is adopted to simplify the numerical

calculation process. The dimensionless position x*, time t*,
temperature T*, heat flux q*, and characteristic time Zs are,
respectively, defined as

x� ¼ x=d; t� ¼ t=ðd2=aÞ; T� ¼ T=T0;

q� ¼ q=ðkT0=dÞ; Zs ¼ sCV=ðd2=aÞ;
(7)

where d is the thickness of the thin film, and a is the thermal

diffusivity. The one-dimensional C-V equation and the one-

dimensional energy conservation equation without heat sour-

ces can be transformed to be the dimensionless form as

follows:

Zs
@q�

@t�
þ @T�

@x�
¼ �q�; (8)

@T�

@t�
þ @q�

@x�
¼ 0: (9)

To get a more accurate result on temperature profiles,

the high-order purely numerical explicit total-variation-

diminishing (TVD) scheme with Roe’s superbee limiter

function39,40 is used in this work. Eqs. (8) and (9) can be

rewritten as the dimensionless vector form

@U

@t�
þ @F

@x�
¼ S; (10)

with the vectors defined as

U ¼ Zsq
�

T�

� �
; F ¼ T�

q�

� �
; S ¼ �q�

0

� �
: (11)

With the method of diagonalization based on eigenvalue,40 a

new variable vector is defined as

W ¼
1

2
T� þ ffiffiffiffiffi

Zs
p

q�
� �

1

2
T� � ffiffiffiffiffi

Zs
p

q�
� �

2
664

3
775; (12)

and Eqs. (8) and (9) can be rewritten as

@W

@t�
þ k

@W

@x�
¼ R; (13)

where

k ¼ diag
1ffiffiffiffiffi
Zs

p ;� 1ffiffiffiffiffi
Zs

p
� �

; (14)

R ¼ � q�

2
ffiffiffiffiffi
Zs

p ;
q�

2
ffiffiffiffiffi
Zs

p
� �T

: (15)

Thus, coupled equations of heat flux q and temperature T can

be transformed into equations, respectively, for Wj (j¼ 1,2),

which can be readily solved by the TVD scheme with the

Roe’s superbee limiter function.40

Verification is made by comparing our dimensionless

results with those in Ref. 39, illustrated in Fig. 2, in solving the

one-dimensional heat conduction problem under the same ini-

tial and boundary conditions. The model in Ref. 39 is based on

the thin film which is finite in x-direction and infinite in y- and
z-directions, with the boundary and initial conditions

q� ¼ 1� cosð2pt�=0:05Þ; x� ¼ 0; t� < 0:05

0; x� ¼ 0; t� � 0:05;

(
(16)

T� ¼ 1; t� ¼ 0; 0 � x� � 1;

q� ¼ 0; t� ¼ 0; 0 � x� � 1: (17)
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Good agreement of the results in the present work with those

in Ref. 39 proves the validity of this method.

III. RESULTS AND DISCUSSION

A. Temperature distribution

The temperature profiles calculated by the MC simula-

tions with LE and DE (h¼ 0�) are shown in Figs. 3 and 4,

respectively. The results of the C-V model are also plotted in

comparison with those of the MC results. The C-V model

predicts a non-dispersive dissipative thermal wave with dis-

persion relation

xt ¼
ffiffiffi
3

p

3
vqkt; (18)

where xt and kt are the frequency and the wave vector of the

thermal wave, respectively, and the velocity of the wave

front and the wave peak are both equal to
ffiffiffi
3

p
vq=3. The dis-

persion relation can be derived from the wave equation of

temperature of the C-V model

@2T

@t2
þ 1

sR

@T

@t
¼ k

sRqcV

@2T

@x2
; (19)

where

k ¼ 1

3
vq

2sRqcV : (20)

Eq. (19) predicts a monochromatic dissipative wave with

wave velocity
ffiffiffi
3

p
vq=3 and dispersion relation xt ¼

ffiffi
3

p
3
vqkt

obtained by making spatial and temporal Fourier transform

on Eq. (20). Much differently, the MC simulation with LE

predicts a dispersive dissipative thermal wave with disper-

sion relation

xt ¼ vq cos ðhÞkt; 0� < h < 90�; (21)

and the velocity of the wave front equates to vq. For the MC

simulations, considering the phonon BTE without scattering

term, we have

@f

@t
þ vq cos hð Þ @f

@x
¼ 0: (22)

The dispersion relations of the temperature profiles and the

distribution profiles are the same because the temperature

has a linear relation with the distribution function. By taking

spatial and temporal Fourier transform, the dispersion rela-

tion of Eq. (22) is obtained as shown in Eq. (21) in which h
distributes according to the Lambert cosine law. Obviously,

resulting from the superposition of phonon waves with dif-

ferent directions, xt is not the single value function of kt,
which is different from the simple dispersion relations. For

the MC simulations with DE, h ¼ h0, the dispersion relation

becomes

xt ¼ vq cos ðh0Þkt: (23)

Waveform of the heat pulse is not kept during the propaga-

tion process and barely influences the shapes of the tempera-

ture profiles in MC simulations with LE, as shown in Figs. 3

(a) and 3(b). Besides, the simulated thermal wave peak value

attenuating rapidly in the first 10 ps is much lower than that

in the C-V model, because in the MC simulations with LE

the energy propagates as a dispersive wave and can be dis-

tributed more uniformly in heated region along the x

FIG. 2. Comparison between the spatial dimensionless temperature distribu-

tion calculated by numerical method in this work and that in Ref. 39.

FIG. 3. Temperature distribution profiles calculated by MC simulations with LE and the C-V model under the stimulation of (a) sinusoidal heat pulse and (b)

rectangle heat pulse.
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direction. In contrast, for the C-V model, the energy is obvi-

ously concentrated near the wave peak, leading to higher

max-temperature in practical applications. In the MC simula-

tions, the temperature profiles become much different as the

phonon emission is changed to be DE (h¼ 0�), as illustrated
in Figs. 4(a) and 4(b). The heat pulse propagates as a mono-

chromatic dissipative thermal wave with dispersion relation

xt ¼ vq cos ðhÞkt; h ¼ 0�; (24)

and the velocity of the wave front and the wave peak are

both equal to vq. Seen from Figs. 4(a) and 4(b), the propaga-

tion of the heat pulse in the predictions of MC simulations

with DE is much similar to that in those of the C-V model

except the wave velocity.

The temperature-time profiles at specific positions are

mostly measured in experiments due to the difficulty in

measuring the temperature-position profiles.5–8 As shown in

Figs. 5(a)–5(c), the temperature profiles at specific positions

for sinusoidal heat pulse condition are calculated by the MC

simulations with two emissions and the C-V model, respec-

tively. The pulse width (PW) tPW is employed as a time pa-

rameter in describing the temperature profiles and the heat

pulse which is defined as

tPW ¼ t2 � t1; t2 > t1; (25)

with

Qðt1Þ ¼ Qðt2Þ ¼ 0:5Qmax; (26)

where Q represents the corresponding physical quantity, i.e.,

temperature T and heat flux density q for temperature profiles

and heat pulse, respectively. The PW of the sinusoidal heat

pulse is calculated to be 1 ps. Comparisons between the PWs

of temperature profiles and the heat pulse are also shown in

Figs. 5(a)–5(c). For the results of the MC simulations with

LE, the PW of the temperature profile at x¼ 11 nm (Kn¼ 5,

Kn¼ l/x) is larger than that of the heat pulse and increases

with the increasing of x. The ballistic transport of the delta

function heat pulse from a point source to a point sensor has

been studied considering the frequency-dependent phonon

properties,41 and the temperature-time profile at the point

sensor which was calculated using the Laudauer formula is

similar to that in Fig. 5(a) at x¼ 11 nm where the ballistic

transport is significant. The broadening of the PWs both in

Ref. 41 and in Fig. 5(a) indicates the dispersion of the ther-

mal wave, i.e., that there are wave components with different

wave velocities. In the predictions of MC simulations with

DE, the temperature profiles are the same as those from the

C-V model both in shapes of profiles and PWs which are

equal to that of the heat pulse.

By changing the phonon velocity to
ffiffiffi
3

p
vq=3, same results

of the temperature distribution as those from C-V model are

obtained by the MC simulations with DE (h¼ 0�), which are

shown in Figs. 6(a) and 6(b). The harsh terms needed for get-

ting the consistent results in simulations indicate the limits of

the classical thermal wave equation and the macroscopic

boundary conditions when describing the ballistic transport.

During the period of the heat pulse, phonons of different emis-

sion directions are excited at the boundary, and phonons of

same emission direction have the same x-components’ veloc-

ity. As illustrated in Figs. 7(a)–7(c), the pulse of phonons of

same emission direction propagates as a monochromatic ther-

mal wave attached to the diffusive background with the wave

peak velocity vp ¼ vq cos ðh0Þðh0 ¼ const:Þ and the dispersion
relation xt ¼ vq cos ðh0Þkt. However, the propagation speed

of the thermal disturbance or the wave front vf are always

equal to vq whatever the angle is in simulations with DE,

which is attributed to these phonons who transport in direction

of the increasing of x in ballistic regime after the first phonon-

phonon scattering near the boundary. As illustrated by the

simulation results in Figs. 3 and 7, the temperature profiles

calculated by simulations with LE are the cosine-weighted

superposition of all possible profiles calculated by simulations

with DE (the angle ranges from 0� to 90�). The superposition
results in serious dispersions of thermal waves and broadening

of PWs in simulations with LE stated above which would be

aggravated once the frequency dependence of the phonon

group velocity are taken into considerations.41

Due to that the temperature profiles of the thermal wave

obtained from the C-V model and the MC simulation with

DE are similar with the temperature wave22,42 in cases of

FIG. 4. Temperature distribution profiles calculated by MC simulations with DE and the C-V model under the stimulation of (a) sinusoidal heat pulse and (b)

rectangle heat pulse.
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Fourier heat conduction, it should be noted that the thermal

wave and the temperature are actually quite different. The

thermal wave in ultrafast thermal transport (we call it ballis-

tic thermal wave) is due to the ballistic transport of heat,

while the temperature wave resulting from the periodic

boundary condition is still under the regime of diffusive

transport and just a kind of transient case of the Fourier heat

conduction. For the temperature wave, the wave velocity is

determined by period of the boundary condition and the ther-

mal diffusivity of the materials. However, the wave velocity

is only determined by the properties of the materials (espe-

cially the phonon group velocity) for thermal wave.22,42

In the case shown in Fig. 8 where the characteristic time

(200 ps) and the corresponding characteristic length (1000 nm)

FIG. 6. Matching curves of results of MC simulations under specific simulation condition with those of the C-V model: (a) sinusoidal heat pulse and (b) rec-

tangle heat pulse.

FIG. 5. Temperature profiles at specific positions and PWs calculated by (a) MC simulation with LE, (b) MC simulation with DE, and (c) the C-V model. The

rectangle dots represent the PWs of the temperature profiles.
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are much larger than the phonon relaxation time (11.2 ps) and

the phonon MFP (56.2 nm), respectively, phonons transport in

the diffusive regime, and the results of the temperature distri-

bution calculated by the MC simulations and the C-V model

tend into uniform. The emissions in the simulations do not

influence the temperature profiles anymore. The results in Fig.

8 show that the diffusive thermal transport is well described by

the classical thermal wave model with macroscopic boundary

conditions.

There are actually a few other macroscopic thermal wave

models, including the DPL model,10 the TM model,16–18 and

the GK model.31 However, as phenomenological models, the

DPL model and the TM model do not indicate clear regime of

the thermal wave. While the DPL model contains the phonon

relaxation time of normal scattering process and the TM

model has relations with phonon hydrodynamics which is

dominated by phonon normal scattering process,17 these two

models tend to predict the second sound. At specific condi-

tions, these two models can degenerate to the C-V model.18

The GK model is directly derived from the phonon BTE with

R and N processes’ terms and predicts the second sound.31

The two-temperature models, including hyperbolic one/two-

step models43 and parabolic one/two-step models,44,45

expressed the two processes: electron system is heated by

absorbing the photons, and phonon system is heated by

electron-phonon coupling. Works on experimental studies on

thermal wave or ultrafast heat conduction were carried in last

several decades.25–29,42,46 As stated in the Introduction, the

experiments on the second sound in helium,25–27 NaF,28 and

other liquids and solids29 are based on phonon BTE with both

R and N processes which corresponds to the GK model theo-

retically. The thermal wave in metal thin films42,46 have been

studied with time-domain thermoreflectance (TDTR) meas-

urements’ experiments which are the main ultrafast heat con-

duction experiments. However, the electron and phonon

systems are both included in experiments when semiconduc-

tor and dielectric solids are measured and only electron tem-

perature in front surface of thin metal film (the transducer)

can be gathered.5–8 In this work, the MC simulation and the

theoretical analysis are based on the phonon BTE with only

resistive scattering term, and the ballistic-diffusive thermal

transport in single-crystal silicon where the ballistic thermal

FIG. 7. Temperature distribution profiles calculated by MC simulations with DE: (a)cos h ¼ 1, (b)cos h ¼ 1=
ffiffiffi
3

p
, and (c)cos h ¼ 1=5, and comparisons

between vf and vp in the attached figures at the top of the right corner.

FIG. 8. Temperature distribution profiles at 200 ps calculated by MC simu-

lations and the C-V model.
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wave occurs is investigated. And also, we are not aiming to

make a complete investigation on an actual ultrafast heat con-

duction process but on regime of ballistic thermal wave.

Thus, the simulation results are not compared with some other

macroscopic models due to difference in theoretical bases and

experiments due to limitation of available experimental data.

The temperature results obtained above and the compar-

isons between them involved in the comparisons between the

C-V model and the MC simulations with different emissions

in predicting the temperature distributions indicate the

defects of the C-V model in describing the ballistic transport

and some new views on ultrafast thermal transport research.

The difference between the MC simulation and the C-V

model does not result from the numerical treatments of the

boundary condition. Different treatments for the same mac-

roscopic boundary condition reflect different physical details

at boundary, which cannot be reflected in the macroscopic

boundary condition of the C-V model. While the inapplic-

ability of the C-V model is often attributed to the diffusive

approximation,11 the modification for the C-V model is

required for further understanding. What’s more, the macro-

scopic boundary condition is required to be analyzed by its

definition. Finally, possible boundary conditions at micro-

scopic level for the phonon BTE should be illustrated.

B. On diffusive approximation of the phonon BTE

Considering the RTA and the R scattering process only,

the one-dimensional phonon BTE is11

@f

@t
þ vx

@f

@x
¼ f0 � f

sR
; (27)

where f0 ¼ 1=ðexp ð�hx=kBTÞ � 1Þ is the equilibrium phonon

distribution function, x is the phonon frequency, and vx is

the x-component of the phonon velocity. To derive the C-V

model from the phonon BTE, the integration on moments of

the distribution function is needed. By multiplying the

�hxsRvxDOSðxÞ=4p(DOS is the density of phonon state) at

both sides of the equation and then integrating them in both

the wave vector (~k) space and the frequency (x) space, the
second term in the left side becomes

sR
X3
p¼1

ð
X

ð
x
�hxv2x

@f

@x

DOS xð Þ
4p

dxdX; (28)

where X is the solid angle in wave vector space. Making dif-

fusive approximation on distribution function f � f0 � f0 or

f 	 f0,
11 Eq. (28) is simplified to

sR
X3
p¼1

ð
X

ð
x
�hxv2x

@f

@x

DOS xð Þ
4p

dxdX

¼ sR
X3
p¼1

ð
X

ð
x
�hxv2x

@f0
@x

DOS xð Þ
4p

dxdX

¼ k
@T

@x
; (29)

with k ¼ cVqv2sR=3 ¼ cVqvl=3: The assumption v2x ¼ v2=3,
used in getting Eq. (29), is the result of the diffusive

approximation, which implies that the distribution function

is nearly isotropic in wave vector space. However, for ultra-

fast process where the system is in highly non-equilibrium

state, the distribution function is highly anisotropic.

To modify the diffusive approximation stated above, the

high order angular dependence of phonon distribution should

be considered. Separate the distribution function to be47

f ðh;XÞ ¼ qðhÞgðXÞ; (30)

where q(h) is the part related to the angle, and g(X) is the

part to other variables. It is required for g(X) to satisfy

X3
p¼1

ð
X

ð
x
�hxf h;Xð ÞDOS xð Þ

4p
dxdX

¼
X3
p¼1

ð
x
�hxg Xð ÞDOS xð Þdx; (31)

which is actually the requirement for energy conservation:

making adiabatic treatment for the phonons with distribution

function f ðh;XÞ and relaxing them to complete equilibrium

state, the distribution function of the final equilibrium state

is g(X). By combining Eqs. (30) and (31), the simplified

requirement is obtained

f h;Xð Þ ¼ q hð Þg Xð Þ
1

4p

ð
X
q hð ÞdX ¼ 1:

8><
>: (32)

Now Eq. (28) can be simplified to be

@

@x

X3
p¼1

ð
X

ð
x
�hxfv2xsR

DOS xð Þ
4p

dxdX

¼ vq
2sR

@

@x

X3
p¼1

ð
x
�hxgDOS xð Þdx 1

4p

ð
X
q hð Þ cos2hdX

¼ vvq
2CvsR

@T

@x
þ v2qsRCvT

@v
@x

; (33)

where v ¼ vðx; tÞ ¼ ð1=4pÞÐXqðhÞ cos2hdX. Under diffusive
approximation, v0 ¼ 1=3. The modified C-V model is then

derived

sR
@q

@t
þ k�

@T

@x
þ @k�

@x
T ¼ �q; (34)

where k� ¼ vsRvq2cvq is defined as the effective thermal con-

ductivity which is time- and position-dependent. The wave

equation of temperature is obtained by combining Eq. (34)

and the energy conservation equation

@2T

@t2
þ 1

sR

@T

@t
¼ 1

sRqcV
k�

@2T

@x2
þ 2

@k�

@x

@T

@x
þ T

@2k�

@x2

� �
: (35)

Compared with the wave equation from the C-V model, Eq.

(35) includes the terms of derivation of ETC with respect to

the position. While the MC simulation in this work is a uni-

form simulation at micro level, the time- and position-

dependent ETC is non-uniform, which is the result of the use
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of macroscopic quantity when describing a highly non-

equilibrium state or ballistic transport. Detailed discussions

are followed in Section III C. The terms caused by the ETC-

position dependence are different in magnitudes under dif-

ferent boundary phonon emission conditions and reflect the

evolution of angular distribution of the distribution function

with the propagation and scattering of phonons. The velocity

of the thermal wave predicted by Eq. (35) is

vw
� ¼ ffiffiffi

v
p

vq ¼ vw
�ðx; tÞ; (36)

which is a function of time and position. A parameter reflect-

ing the degree of the anisotropy of the phonon system can be

defined as

g ¼ gðx; tÞ ¼ v=v0 ¼ 3v: (37)

The time and position dependence of the wave velocity

which caused by the evolution of g would result in the dis-

persion of the thermal wave similar to what has been pointed

out in Ref. 39.

Different boundary phonon emissions in the MC simula-

tions correspond to the different changing processes of the

thermal wave velocity in the modified C-V model. The ther-

mal wave propagates with a constant velocity equal to vq
under the DE condition. Actually, the simulations with DE

for ballistic transport are described by the phonon BTE with

no scattering term and a constant wave vector

@f

@t
þ vq cos h0ð Þ @f

@x
¼ 0; (38)

with a wave solution f ¼ f ðx� vq cos ðh0ÞtÞ. The thermal

wave velocity near the boundary at the beginning under the

LE condition could be calculated by considering the analyti-

cal solution of the phonon BTE for ballistic transport where

the scattering term can be canceled

@f

@t
þ vx

@f

@x
¼ 0: (39)

The analytical solution is15

f ¼ fw½t� ðs� s0Þ=j~vj; r � ðs� s0ÞX̂
; (40)

which indicates a cosine-form distribution when fw ¼ f0 is

set, where t is the time, s � s0 is the distance along the propa-
gation direction X̂, and fw is the boundary distribution func-

tion along the direction X̂. According to the way noted by

Eq. (32), the distribution function near the boundary at the

beginning can be rewritten as the separation form

f ¼ 4 cos ðhÞgðXÞ; (41)

where the factor 4 is due to the normalization on the hemi-

spherical distribution. The velocity of the thermal wave at

the boundary is then obtained

vw
� ¼ ffiffiffi

v
p

vq ¼
ffiffiffi
2

p

2
vq; (42)

where v ¼ ð1=4pÞÐXqðhÞ cos2hdX ¼ ð1=4pÞÐX4 cos3hdX
¼ 1=2. At time much larger than the phonon relaxation time,

phonons transport in diffusive regime, and the thermal wave

propagates with a steady velocity equal to
ffiffiffi
3

p
vq=3. The

processes that the velocity changes from
ffiffiffi
2

p
vq=2 or vq toffiffiffi

3
p

vq=3 are exactly the developments of the thermal trans-

port from ballistic to diffusive regime.

The modified C-V model is derived and can characterize

the evolution of the thermal transport regime. However, the

determination of the ETC relies on the exact solutions of the

phonon BTE. The most important is that the main property

of the modified equation does not change, and the evolution

of the thermal wave predicted by the modified model would

still be different from that by the MC simulations. The fail-

ure of the modification in considering the higher order angu-

lar dependence of the phonon distribution indicates the

limits of the simple macroscopic equation in describing the

ultrafast transient thermal transport.

C. Macroscopic quantities in ballistic transport

In phonon system, the phonon mode is determined

specifically by variables ðx; ~kÞ when the polarizations of

phonons are not distinguished. The mean frequency x0 under

the gray approximation could be calculated to be

x0 ¼

X3
p¼1

Ð
xxfDOS xð Þdx

Np
; (43)

where Np ¼
P3

p¼1

Ð
xfDOSðxÞdx: Now, the function of the

phonon frequency spectrum is simplified to be Npdðx� x0Þ.
For heat flux density

~q ¼
X3
p¼1

ð
X

ð
x
�hxfvxDOSðxÞdxdX

¼ vxa
	!X3

p¼1

ð
x
�hxfDOSðxÞdx

¼ Np�hx0 vxa
	!; (44)

where vxa
	! ¼ vxak0

!
=jk0!j. The formulas above show that the

integration on moments of microscopic quantities is equiva-

lent to averaging phonons on both magnitude and direction

of wave vectors, and the information of the phonon distribu-

tion in wave vector space is lost due to the integration. The

function of frequency spectrum and wave vector is then sim-

plified to be Npdðx� x0Þdð~k � k0
!Þ. Thus, the mode is deter-

mined as ðx0; k0
!Þ for a given phonon, and then the thermal

motion is decoupled to be monochromatic mechanical waves

under a definite frequency and wave vector.

In ballistic transport, the monochromatic waves with

single wave vector propagate without resistive scatterings,

and the momentum is well kept. In diffusive conditions, the

monochromatic waves are submerged in the resistive scatter-

ings as the infinite small control volume in physics is large

enough to contain large amount of phonons and the charac-

teristic time is long enough to make sure enough R scatter-

ing. Considering the motion of a single phonon emitted from

the boundary, the mean square displacements (MSD) in x
direction of the phonon experiencing no scattering and
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enough scattering (corresponding to the ballistic transport

and the diffusive transport) are

x2 ¼ vt cos hð Þ2 ¼ 1

2
v2t2 � t2; (45)

x2 ¼
Xn
i

l cos hi

 !2

¼ 1

3
nl2 ¼ 1

3
lvt � t; (46)

respectively. Different transport processes correspond to the

different x2 � t relations, i.e., x2 � t2 for phonon ballistic

transport, x2 � t for phonon diffusive transport, and x2

� tað1 < a < 2Þ for ballistic-diffusive transport, which agree

with the analyses in Ref. 22 based on the MD simulation

results. The difference between the ballistic condition and

the diffusive condition is whether the time-averaging of the

motion of single phonon is equivalent to its system-

averaging except the x2 � t relations. As the square displace-
ment of a specific phonon is

x2 ¼ ðvt cos hÞ2; (47)

which depends on both time and direction of the motion, the

time-averaging of the motion of single phonon is not equiva-

lent to its system-averaging for ballistic condition. Thus,

more information, i.e., the phonon directional information is

needed to describe the transport process completely.

Here, the equivalence between the C-V model and the

phonon BTE is illustrated. There are eigenvalue method, per-

turbation method, moment method, and so on to solve the

BTE analytically.48 The moment method requires a function

assemble describing the system completely to make sure the

equivalence between the moment equations and the BTE.

More equations of fluxes and more boundary conditions cor-

respondingly containing derivatives on time and position are

needed to ensure the accuracy of the moment method as the

Knudsen number becomes larger. The C-V model is derived

from BTE by considering the second moments of the distri-

bution function, which can be seen as an application of

moment method. While the MC simulation solves the BTE

accurately by simulating its corresponding physical proc-

esses, the differences between the results of temperature cal-

culated by MC simulations and the C-V model indicate that

the C-V model including the modified C-V model is not a

good substitute for the phonon BTE in describing the ultra-

fast thermal transport.

D. Initial and boundary conditions

In this section, the discussion is launched on the bound-

ary conditions of the distribution function to the phonon BTE

and the corresponding emissions in MC simulations. As the

gray approximation is adopted, the discussion is focused on

the phonon angular distribution at the boundary. Once the

boundary condition is determined, the emission in MC simu-

lations is determined accordingly by the following relation:24

GðhÞ ¼
ðh
0

qðh0Þ cos h0 sin h0dh0; (48)

where qðh0Þ is the part of the boundary distribution function

relative to the angle only, and G(h) is the random quantity

distributed from 0 to 1 uniformly which is, namely, the emis-

sion function in MC simulations.

For real heating processes, the boundary conditions

depend on the types of heating (whether there are interfaces)

and also the period, the magnitudes, and the phonon fre-

quency spectrum of the heat pulse.49 There are two types of

pulse heating, one is pulse heating with transducer,50 and the

other is pulse laser heating.1–4 The effects of the interface

need to be considered in heating process with transducer,

including the elastic and inelastic scatterings of phonons in

transmitting the interface. For inelastic scattering process,

the complete phonon frequency spectrums and the dispersion

relations are required to be considered.51 Experimental and

theoretical investigations on the angular distribution of

phonons from metal film and cleaved {100} face of NaF to

liquid helium are taken by Wyatt,47,49,52–56 and several dif-

ferent angular distributions were measured under different

heating conditions. The distribution functions at the bound-

ary can be then fitted with the experimental data of the angu-

lar distributions using Eq. (32).47 For ultra-short pulse laser

heating process, phonons are excited by the hot electrons

heated by the pulse laser within the skin depth. By assuming

that the heat flux has been formed within the skin depth, the

boundary condition could be selected to be in the form of

f ¼ f0 � sRvx@f0=@x in which the derivation is determined

according to the magnitudes of the heat flux density and the

thickness of the skin depth.

IV. CONCLUSIONS

(1) The heat pulse propagates with a finite speed as ballistic

thermal wave in both the MC simulations and the C-V

model. However, the velocity of the wave front in the

predictions of MC simulation is vq, while
ffiffiffi
3

p
vq=3 in

those of the C-V model. Besides, the temperature profiles

are determined under heat flux boundary conditions in

the C-V model, while they also depend on the phonon

emission directions in the MC simulations. The shapes

of the heat pulse barely influence the temperature distri-

butions and cannot be kept during the process of propa-

gation in the MC simulations with LE, while they are

well kept in the predictions of the C-V model. The peak

value of the temperature profiles of simulations with LE

is much lower than that of the C-V model and attenuates

rapidly within the first 10 ps (comparable to the phonon

relaxation time 11.2 ps).

(2) The temperature profiles calculated by the MC simula-

tions with LE are the cosine-weighted superposition of

all possible profiles (emission angle ranges from 0� to

90�) calculated by the simulations with DE. The temper-

ature distributions calculated by the C-V model can be

obtained in the MC simulations only with DE by setting

phonon velocity v ¼ ffiffiffi
3

p
vq=3.

(3) A modified C-V model is derived from the phonon BTE

with a time- and position-dependent ETC. The corre-

sponding time- and position-dependent thermal wave
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velocity characterizes the evolution of the thermal trans-

port from ballistic to diffusive regime.

(4) The reason why the macroscopic thermal wave model

(including the modified C-V model) could not describe

the ballistic thermal wave accurately is the failure of the

macroscopic quantities when describing the highly non-

equilibrium state. The information of the phonon distri-

bution in wave vector space is lost due to the integration

on moments of the distribution function in wave vector

space, which causes the incompletion of the macroscopic

quantities when describing the highly non-equilibrium

phonons and their boundary conditions.

(5) The phonon emissions in the MC simulations are deter-

mined correspondingly by the boundary conditions of

the distribution function for the phonon BTE which are

different under different heating conditions. Heating

types (whether there are interfaces) and the angular fre-

quency, the magnitude, and the phonon frequency spec-

trum of the heat pulse all influence the boundary

conditions. The temperature distribution and the signifi-

cant degree of wave characteristics of the heat propaga-

tion in ballistic-diffusive regime both depend on the

boundary conditions of the distribution function.
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