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Taylor series approximation like qðt þ sÞ � qþ s @q
@t are often used to derive, extend or interpret typical

heat conduction models. Researchers may take it for granted that the single-phase-lagging (SPL) model
can be considered as an extension of the Cattaneo–Vernotte (CV) model because there is such approxi-
mation relationship between them. We point out in this paper that this Taylor series approximation itself
has some defects based on analyses in mathematics, physics and some examples first. Then, we show
essential differences in both mathematics and physics between the CV and SPL models. It is found that
their mathematical characteristics and accordance with the laws of thermodynamics are significantly dif-
ferent, which indicates that using this approximation to connect the two models may be defective in
some cases. What’s more, higher order approximation can’t solve these problems and defects.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fourier’s law of heat conduction is often used to describe nor-
mal heat conduction problems in engineering. In recent years,
the limitations of Fourier’s law have been revealed [1–6] that
Fourier’s law predicts an unphysically infinite speed of heat pertur-
bation propagation and it fails to characterize supertransient and
high heat flux processes well. Several modified heat conduction
models were proposed to get over these limitations. The
Cattaneo–Vernotte (CV) model [7,8] is the most typical one which
leads to hyperbolic heat conduction equation and wave-like trans-
port in heat conduction processes, called thermal wave. Jeffrey
model [2] can be considered as an extension of the CV model since
it takes into account the influence of temperature relaxation. Tzou
[9] proposed the single-phase-lagging (SPL) model which can
reduce to the CV model by taking first-order Taylor series approx-
imation. Anisinov et al. [10] proposed a model for metals by
regarding the interactions of electron and phonon. Guyer et al.
[11] developed a representative model for pure phonon heat con-
duction. There are also further modifications and improvements
of these classical models. Tzou [12] proposed a dual-phase-
lagging model to add the influence of temperature lag on the basis
of the single-phase-lagging model. Coleman et al. [13] improved
the changing rate of the heat energy. Most of these models are
linear and predict limited heat conduction speed, getting over
the infinite speed problem in Fourier’s law. There are also some
non-linear models which predict limited heat conduction speed.
Thermomass theory [14–17] for heat conduction under extreme
conditions is just one of them based on relativity and
mass-energy equation. Alternative approaches to the analysis of
the diffusion equation [18–20] is another non-linear model whose
equation can be changed to Burger’s equation and therefore, some
existing conclusions in math can be used to analyze heat
conduction problems.

We have seen from the above brief review that Taylor series
approximation is adopted in several heat conduction models. Here
the CV and SPL models are taken as typical examples. The CV
model is expressed as

qþ s
@q
@t

þ krT ¼ 0; ð1Þ

where s is the thermal relaxation time, q is the heat flux density, k is
the thermal conductivity and T is the temperature. The CV model is
used to describe the supertransient heat conduction and also agrees
well with some of experiments and simulations. Consider the
single-phase-lagging model [9]

qðx; y; z; t þ sÞ þ krT ¼ 0: ð2Þ
Comparing Eq. (2) with the CV model Eq. (1), we find that for

qðx; y; z; t þ sÞ, if we use first-order Taylor series approximation

qðt þ sÞ � qþ s @q
@t

: ð3Þ

Eq. (2) will reduce to Eq. (1). Because of this approximation rela-
tionship between them, the SPL model is considered as an exten-
sion or explanation of the CV model and similar approximation
methods, such as temperature Taylor series approximation, are
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also used in deriving other typical heat conduction models
[21–25]. This approximation method is assumed to cause negligi-
bly small influence because the relaxation time is very small.

In this paper, however, we note that the Taylor series approxi-
mation can lead to very large difference no matter how small the
relaxation time is. Even if the relaxation time is very small, the
deviation between the two sides of Eq. (3) can be very large, and
there are also some essential differences in mathematics and phy-
sics between the CV and SPL models. Their mathematical charac-
teristics and accordance of the laws of thermodynamics are very
different, which shows that using this approximation to connect
the two models is defective. In addition, higher order approxima-
tion can’t solve the mathematical and physical problems caused
by first-order approximation.

2. Influence of Taylor series approximation

2.1. Deviation of heat flux field

In the approximation of heat flux Eq. (3), qðt þ sÞ doesn’t equal
to qþ s @q

@t strictly. Therefore, this approach is considered as a spe-
cial Taylor series approximation when the relaxation time s is very
small. But in fact, the deviation between the two sides of Eq. (3) is
uncertain in mathematics. First, not all functions have Taylor ser-
ies, even infinitely differentiable functions. For these functions
which don’t have Taylor series, Taylor series approximation is
infeasible because the remainders don’t tend to zero. Therefore
the deviation between the Taylor series and function is not sure.
In addition, Taylor series approximation is feasible only in their
convergence regions. That is to say, even if a function has Taylor
series, the approximation only exists in some certain regions.
Second, even if we can make sure that Taylor series approximation
exists and the relaxation time s is very small, the deviation
between the two sides of Eq. (3) is not necessarily very small. This
is because the relaxation time s is a physical property. It must be a
real number, not an ‘‘infinitesimal” in mathematics. As long as s is
not an infinitesimal, the deviation between qðt þ sÞ and qþ s @q

@t can

still be very large because the higher order derivative terms sn @nq
@tn

are unknown. Although sn are very small, @
nq
@tn can also be very large

and, their products are uncertain. Because of these uncertain
higher order derivative terms, the deviation between qðt þ sÞ and
qþ s @q

@t is uncertain either. In summary, even if the relaxation time
s is very small, the deviation between the two sides of Eq. (3) can
still be very large. As examples, we will discuss this problem below
in some common functions which often appear in heat conduction
problems. Consider the heat conduction equations of Fourier’s law
Eq. (4) and the CV model Eq. (5)

@T
@t

¼ k
qcV

r2T; ð4Þ

@T
@t

þ s @
2T
@t2

¼ k
qcV

r2T: ð5Þ

For Eq. (4), a general method is to make a separation of variables
T ¼ f ðtÞgðxÞ. Substituting it into Eq. (4) gives

f 0

f
¼ g00

g
¼ �kn; ð6Þ

f 0ðtÞ þ knf ðtÞ ¼ 0: ð7Þ
Solving this ordinary differential equation, we obtain

f ðtÞ ¼ Ce�knt . The part determined by time of temperature field has
a form of exponential function. For Eq. (5), we can also make a sep-
aration of variables T ¼ f ðtÞgðxÞ. Substituting it into Eq. (5) gives
1
s f

0 þ f 00

f
¼ k
qcVs

g00

g
¼ �kn; ð8Þ
1
s
f 0 þ f 00 þ knf ¼ 0: ð9Þ

There will be different cases. When 1
s2 � 4kn > 0, the solution is

f ðtÞ ¼ A1ex1t þ B1ex2t which also has a form of exponential function.
x1; x2 are the real roots of x2 þ 1

s xþ kn ¼ 0. When 1
s2 � 4kn < 0, the

solution is f ðtÞ ¼ ex3tðA2 sin x4t þ B2 cos x4tÞ. x3 þ x4i; x3 � x4i are
the complex roots of x2 þ 1

s xþ kn ¼ 0. We can find that not only
exponential function but also trigonometric function appears.
From the above analyses we can find that the part of temperature
field determined by time can be expressed by exponential and
trigonometric functions in the method of separation of variables.
So, we can make sure the deviation between the two sides of
Eq. (3) in these functions to show this deviation in heat conduction
problems.
2.1.1. Deviation in trigonometric function
Consider a heat conduction problem with heat source

/ ¼ � 2npq0qcV x
ks cos 2npt

s . In this case, the energy conservation equa-
tion is expressed as

@q
@x

¼ �qcV @T
@t

þ /: ð10Þ

Substituting it into Eq. (2) leads to

qcV
k

@qðt þ sÞ
@t

þ @/
@x

¼ r2q: ð11Þ

The initial condition is taken qjt¼0 ¼ 0 and the boundary condi-
tions are taken qjx¼0;l ¼ q0 sin 2npt

s . For this problem, we can get its
classical solution

qðx; tÞ ¼ q0 sin
2npt
s : ð12Þ

It is worth mentioning that for this problem, Eq. (12) is also
equivalent to Fourier’s Law because qðx; tÞ ¼ qðx; t þ sÞ. Then we
can use Eq. (12) to show the deviation in Eq. (3). For the heat flux
expressed by Eq. (12), we can get its Taylor series approximation

qþ s @q
@t

¼ q0 sin
2npt
s

þ 2np cos
2npt
s

� �
: ð13Þ

The relative deviation between qðt þ sÞ and qþ s @q
@t is

g ¼ qþ s @q
@t � qðt þ sÞ
qðt þ sÞ ¼ 2np cot

2npt
s

: ð14Þ

We find that Eq. (14) is a periodic function and its value can
reach infinity. No matter how small the relaxation time s is (larger
than zero), the relative deviation can still be very large. The large
deviation will always appear because Eq. (14) is a periodic func-
tion. Fig. 1 shows the heat flux fields with the form of trigonomet-
ric function which belongs to original heat flux qðt þ sÞ and heat
flux with Taylor approximation qþ s @q

@t (q is expressed by
Eq. (12) and n ¼ 1). In Fig. 1, the heat flux with Taylor
approximation has far larger amplitude than the original heat flux.
Therefore, the deviation caused by Taylor approximation can be
very large and we find that the difference between the two heat
flux fields is in periodical vibration. In fact, Fig. 1 is for the case
of n ¼ 1, and the difference between them will be larger and larger
with the increase of n.



Fig. 1. Heat flux fields with the form of trigonometric function.
Fig. 2. Heat flux fields with the form of exponential function.
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2.1.2. Deviation in exponential function
Consider a heat conduction problem with heat source

/ ¼ � a
t
s ln aq0qcV x

ks . The heat conduction equation is still Eq. (11). The
initial condition is taken qjt¼0 ¼ q0 and the boundary conditions
are taken qjx¼0;l ¼ q0a

t
s. For this problem, we can get its classical

solution

qðx; tÞ ¼ q0a
t
s: ð15Þ

Then we can use Eq. (15) to show the deviation in Eq. (3). For
heat flux expressed by Eq. (15), we can get its Taylor series
approximation

qþ s
@q
@t

¼ q0a
t
sð1þ ln aÞ: ð16Þ

The relative deviation between qðt þ sÞ and qþ s @q
@t is

g ¼ qþ s @q
@t � qðt þ sÞ
qðt þ sÞ ¼ 1þ ln a� a

a
: ð17Þ

This relative deviation is a constant which has nothing to do
with the relaxation time s. From the above analyses we can find
that for some common functions in heat conduction problems,
the relative deviation between qðt þ sÞ and qþ s @q

@t can be very
large no matter how small the relaxation time s is. Fig. 2 shows
the heat flux fields with the form of exponential function which
belong to original heat flux qðt þ sÞ and heat flux with Taylor
approximation qþ s @q

@t (q is expressed by Eq. (15) and a ¼ e). In
Fig. 2, the original heat flux is larger than the heat flux with Taylor
approximation. In addition, the difference between them will be
larger and larger as time goes on but the relative deviation is a con-
stant, i.e. Eq. (17).

2.2. Influence on entropy production rate

From Eq. (2) we can obtain

rT ¼ � qðt þ sÞ
k

: ð18Þ

Substituting it into the expression of the entropy production

rate _S ¼ � qrT
T2

leads to

_S ¼ qqðt þ sÞ
kT2 : ð19Þ
According to the second law of thermodynamics, the entropy
production rate must be positive or zero. (We will discuss if
Eq. (19) is positive or zero in Section 3.3) If we use the Taylor series
approximation in Eq. (3), the expression of the entropy production
rate turns to

_S0 ¼ q qþ s @q
@t

� �
kT2 : ð20Þ

From the above analyses we know that the deviation between
qðt þ sÞ and qþ s @q

@t can be very large, even infinite. So it is possible
that one is positive and the other is negative. Therefore, the Taylor
series approximation in Eq. (3) may lead the original positive
entropy production rate to be negative. Next, we will provide a
simple example about this problem. Consider a heat conduction
problem without heat source, i.e. / ¼ 0. The heat conduction equa-
tion is still Eq. (11). The initial condition is taken qjt¼0 ¼ q0 sin px

l ,
the boundary conditions are taken qjx¼0;l ¼ 0, and physical proper-

ties satisfy kp2

qcV l
2 ¼ 2

e2s. For this problem, we can get its classical

solution

qðx; tÞ ¼ q0e
�2t
s sin

px
l
: ð21Þ

Substituting Eq. (21) into Eq. (19), we can get the original
entropy production rate

_SI ¼ qqðt þ sÞ
kT2 ¼ e�2q2ðx; tÞ

kT2 : ð22Þ

Obviously, this original entropy production rate expressed by
Eq. (22) is greater than or equal to zero at any time and place.
Eq. (22) equals to zero only when the heat flux is zero and there-
fore, the original heat flux field satisfies the second law of thermo-
dynamics. Substitute Eq. (21) into Eq. (20), and then, we get the
entropy production rate which belongs to the heat flux with Taylor
series approximation

_SII ¼ � q2ðx; tÞ
kT2 6 0: ð23Þ

This entropy production rate which belongs to the heat flux
field with Taylor series approximation is less than or equal to zero
at any time and place. This result has nothing to do with the
relaxation time s. Obviously, it violates the second law of
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thermodynamics but the original entropy production rate doesn’t.
So this violation of the second law of thermodynamics is caused by
the Taylor series approximation in Eq. (3). That is another big prob-
lem of this approximation.

In addition, this problem is adiabatic and it’s an isolated system.
According to the second law of thermodynamics, this system’s
entropy must increase. But the negative entropy production rate
in Eq. (23) means that the entropy decreases, which is contradic-
tory. From Eq. (21) we find that the heat flux attenuates and there-
fore, the system tends to equilibrium. The negative entropy
production rate in Eq. (23) means that equilibrium state has the
least entropy which is also non-physical. So the approximation in
Eq. (3) is defective not only in mathematics but also in physics.
Fig. 3 shows the entropy production rates which belong to original
heat flux qðt þ sÞ and heat flux with Taylor approximation qþ s @q

@t.

Here x ¼ l
2, a ¼ q20

kT2
and S0 ¼ _SI l

2 ; t
� �

or _SII l
2 ; t
� �

. From Fig. 3, it is not
difficult to find that the original entropy production is always pos-
itive but the entropy production rates belonging to Taylor approx-
imation is always negative. In summary, for the entropy
production rate problem, the single-phase-lagging model is better
than the CV model. It is necessary to point out that the entropy
production rates in this paper are evaluated based on classical irre-
versible thermodynamics (CIT). However, there are further discus-
sion about this in extended irreversible thermodynamics [30]
which beyond our ability.

3. Difference between SPL and CV models

Although a certain ‘‘approximation” relationship exists between
the single-phase-lagging model and the CV model, some essential
differences also exist between them. Considering the single-
phase-lagging model as an extension or explanation of the CV
model and using the single-phase-lagging model to derive or cover
the CV model will be defective because of these essential differ-
ences. On balance, this Taylor series approximation is only for
determined functions but we need suitable boundary and initial
conditions to determine the heat flux fields. Without these suitable
boundary and initial conditions, the heat flux fields are not deter-
mined functions. Therefore, this approximation is defective
because we do not even know if the time differential @q

@t exists.
What’s more, even if we have these boundary and initial
conditions, the heat flux fields may not be existent, unique or
Fig. 3. Entropy production rates belonging to original and Taylor approximation
heat fluxes.
differentiable either. So, this Taylor series approximation method
is greatly influenced by the boundary and initial conditions and a
very small relaxation time is not enough to predict the influence
of this approximation. That is the reason why there are essential
differences between the two models.

3.1. Difference in physical meaning

Eq. (2) shows that there is a time lag between the temperature
gradient and the heat flux response, which means that the speed of
the heat flux response to temperature gradient is not infinite.
However, for the CV model, the heat conduction equation is a wave
equation which means that the speed of temperature perturbation
itself is not infinite. The two heat conduction models both mean
that some certain speeds are not infinite but the underlying mean-
ings of the speed are different. From observing Eq. (1), we find that
for the CV model, the temperature gradient at a certain moment
must influence the heat flux at the same moment. However, in
Eq. (2), the temperature gradient at a certain moment influences
the heat flux at the moment s later. In other words, the heat flux
only depends on the instantaneous temperature gradient s ago in
Eq. (2). However, for the CV model, the heat flux depends on not
only the instantaneous temperature gradient but also the preced-
ing heat conduction process which is reflected in s @q

@t. Next, we will
provide a simple example. Consider a case which satisfies qjt¼0 ¼ q0

and rT ¼ 0; t P 0. For Eq. (2), because of rTjt¼0 ¼ 0, we can
obtain qjt¼s ¼ 0 which has nothing to do with the initial heat flux
qjt¼0. However, for the CV model, we obtain q ¼ q0e�

t
s and

qjt¼s ¼ q0
e . Obviously, for the CV model, qjt¼s depends on qjt¼0. In

fact, the CVmodel means that there is a phase difference h between
the temperature gradient and the heat flux response in fact. How-
ever, there is a time lag not phase difference in Eq. (2). At a fixed
location, this phase difference h can be expressed as Eqs. (24)
and (25) in mathematics

rT ¼ C sin nðtÞ; ð24Þ

q ¼ �kC sin½nðtÞ þ h�: ð25Þ
3.2. Difference in mathematics

For the single-phase-lagging model, the heat conduction equa-
tion without heat source is

qcV
k

@T
@t

¼ r2Tðt � sÞ: ð26Þ

In Eq. (26), there is only a first-order time derivative term. So for
a single-phase-lagging problem, we only need to give one initial
condition to determine the solution in general. However, a
second-order time derivative term appears in Eq. (5). Therefore,
we need two initial conditions to determine the solution for the
CV model. The number of initial conditions needed to determine
the solution is different. That is one of the most obvious difference
between the two models. In addition, Eq. (26) doesn’t have the
uniqueness of solution but Eq. (5) does. For the problem of unique-
ness, Eq. (5) is a telegrapher’s equation and if we provide enough
boundary conditions TjC ¼ f C and initial conditions Tjt¼0 ¼ f 0 and
@T
@t

��
t¼0 ¼ f t0, the solution will be unique. However, the problem of

uniqueness is more complex for Eq. (26). In some special circum-
stances, even if we give enough boundary and initial conditions,
the solutions are still not unique. Next, we will provide a simple
example. Consider a one-dimensional problem where the physical
properties satisfy 2sn2p

qcV l
2 ¼ 1 (n is an integer). The boundary condi-

tions are taken Tjx¼0;l ¼ f C, and the initial condition is taken
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Tjt¼0 ¼ f 0. Consider a solution A sin npx
l sin pt

2s, where A is a constant.
This solution satisfies Eq. (26), boundary conditions
TjC ¼ Tjx¼0;l ¼ 0 and initial condition Tjt¼0 ¼ 0. This means that if
a solution TKðx; tÞ satisfies Eq. (26), boundary conditions
Tjx¼0;l ¼ TjC ¼ f C and initial condition Tjt¼0 ¼ f 0, other solutions

expressed by T 0
Kðx; tÞ ¼ TKðx; tÞ þ A sin npx

l sin pt
2s will also satisfy

Eq. (26) and all conditions. Therefore, the solution of this problem
is not unique. This example shows that Eq. (26) doesn’t have the
uniqueness in some cases, which is another great difference
between the two models.

It’s a very complex and frontier problem about well-posedness
problem of the differential delay equation like Eq. (26) in mathe-
matics and it is beyond our ability to make more mathematical
analyses on it. Here, we will provide a physical method to guaran-
tee the uniqueness of the solution for Eq. (26). We can consider a
heat conduction process beginning at t ¼ 0, and there is no heat
conduction when t < 0. That is to say, the systems are in thermal
equilibrium and the whole temperature field is uniform when
t < 0. The mathematical representations are Tðx; tÞ ¼ C0; t < 0. Let
u ¼ T � C0 and u also satisfies qcV

k
@u
@t ¼ r2uðt � sÞ. The boundary

and initial conditions of u are ujC ¼ TjC � C0 and
ujt¼0 ¼ Tjt¼0 � C0. Consider the Laplace transform

F ¼ Rþ1
0 ue�ptdt. Substituting it into qcV

k
@u
@t ¼ r2uðt � sÞ, and

according to the Time-Shift Theorem, we can get

e�psr2F ¼ qcV
k

ðpF �ujt¼0Þ: ð27Þ

Eq. (27) is an elliptic differential equation and its solution is
unique when the boundary conditions are determined and contin-
uous. F ¼ Rþ1

0 ue�ptdt is unique, and umust be continuous in time

because there is a time differential @u
@t in the heat conduction equa-

tion. Based on the continuity of u, we can determine that u is
unique from Lerch’s Theorem. Finally, we can get a unique temper-
ature field for the heat conduction problem. In summary, we can’t
guarantee that the solutions of Eq. (26) are unique in general but
we can guarantee the uniqueness by considering no heat conduc-
tion exists when t < 0.

For Fourier’s law, the heat conduction equation Eq. (4) is a para-
bolic equation and its maximum principle guarantees that the
maximum values of temperature fields must appear in boundary
or initial conditions. However, for the CV model, the heat conduc-
tion equation Eq. (5) is a wave equation which doesn’t have such
maximum principle in mathematics. It’s easy to understand this
result in physics. Consider a vibration of a fixed–fixed string with-
out initial displacement. As long as the initial velocity is not zero,
the displacement will be not always zero. Because the displace-
ment is zero in boundary and initial conditions, the maximum val-
ues don’t appear in boundary or initial conditions. For Eq. (26), we
have mentioned that if the physical properties satisfy 2sn2p

qcV l
2 ¼ 1, the

solution with the form of A sin npx
l sin pt

2s satisfies Eq. (26), boundary
conditions TjC ¼ Tjx¼0;l ¼ 0 and initial condition Tjt¼0 ¼ 0.
Obviously, the maximum values of this solution are �jAj which
don’t appear in the boundary or initial conditions. Therefore,
Eq. (26) doesn’t have maximum principle either. The physical
problems related to maximum principle in mathematics will be
discussed in Section 3.4.
3.3. On negative entropy production rate

For Fourier’s Law qþ krT ¼ 0, we have _S ¼ � qrT
T2

¼ q2

kT2
P 0.

Therefore, the entropy production rate of heat conduction is
always positive or zero, which is required by the second law of
thermodynamics. Next, we will discuss if the entropy production
rate is positive or zero in the SPL and CV models.

For the single-phase-lagging model, the entropy production rate
is Eq. (19). In general, we can’t guarantee that qðx; y; z; t þ sÞ and
qðx; y; z; tÞ are all positive or negative at the same time. Therefore,
we can’t guarantee the entropy production rate is positive or zero
either. However, q must be continuous in time because there is a
time differential @q

@t in the heat conduction equation. Based on the
continuity of q, we can obtain that there is a s0 > 0, and when
s < s0, qðx; y; z; tÞqðx; y; z; t þ sÞ P 0. Therefore, for the single-
phase-lagging model, the entropy production rate will be positive
or zero as long as the relaxation time is enough small. It should
be pointed out that this condition is just a prerequisite or hypoth-
esis for avoiding negative entropy production rate in the SPL
model. It is possible that although the relaxation time is very small,
the condition s < s0 is still not satisfied which will still cause neg-
ative entropy production rate problem. For the CV model, there is a
phase difference h between the temperature gradient and the heat
flux response expressed by Eqs. (24) and (25). Substituting
Eqs. (24) and (25) into the expression of the entropy production

rate _S ¼ � qrT
T2

leads to

_S ¼ �qrT

T2 ¼ kC2 sin½nðtÞ þ h� sin nðtÞ
T2 : ð28Þ

Obviously, we can’t guarantee that sin nðtÞ and sin½nðtÞ þ h� are
all positive or negative at the same time either. We can see that
the entropy production rate is not necessarily positive or zero for
the CV model. Unlike the single-phase-lagging model, the entropy
production rate is still not positive or zero for the CV model no
matter how small the relaxation time is (larger than zero). That
is because as long as the relaxation time is larger than zero, the
phase difference h will exist and this phase difference depends
on not only the relaxation time but also other physical properties,
the initial and boundary conditions. So the phase difference is not
necessarily very small no matter how small the relaxation time is.
In addition, if sin nðtÞ and sin½nðtÞ þ h� are all positive or negative at
the same time depends on not only the phase difference but also
nðtÞ. For example, when nðtÞ ¼ 2Np� h

2, where N is an integer, the

entropy production rate turns to _S ¼ � qrT
T2

¼ � kC2 sin2 h
2ð Þ

T2
6 0. In

summary, compared with the single-phase-lagging model, the CV
model is more likely to lead to the negative entropy production
rate. Next, we will provide an example. Consider a heat conduction
problem without heat source. The initial condition is taken
Tjt¼0 ¼ T0 1þ sin px

l

� �
, the boundary conditions are taken

Tjx¼0;l ¼ T0 and the physical properties satisfy ksp2

qcV l
2 ¼ 1

2
ffiffi
e

p . For this

problem, if we use the single-phase-lagging model, we can get
the classical solution

T1ðx; tÞ ¼ T0 1þ e�
t
2s sin

px
l

� 	
: ð29Þ

Then we can obtain the entropy production rate _S1

_S1 ¼ � qrT

T2 ¼
ffiffiffi
e

p
kðrTÞ2
T2 P 0: ð30Þ

From Eq. (30) we find that the entropy production rate of the
single-phase-lagging model is positive or zero. Therefore, for this
problem, the single-phase-lagging model satisfies the second law
of thermodynamics. From Eq. (29) we find T1ðx; tÞ > 0 and
therefore, the single-phase-lagging model also satisfies the third
law of thermodynamics. The heat conduction equation satisfies
first law of thermodynamics naturally. So for this problem, the
single-phase-lagging model satisfies all the three laws of thermo-
dynamics. For the CV model, we have mentioned that two initial
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conditions are needed to determine the solution. So if we use the
CV model, we need an extra initial condition. To make the two
models’ initial states have a certain ‘‘consistency”, we can let they
have the same initial heat flux. So this extra initial condition for the

CV model is q2jt¼0 ¼ q1jt¼0 ¼ � kT0p
ffiffi
e

p
l , where q1jt¼0 is the initial heat

flux of the single-phase-lagging model determined by the classical
solution Eq. (29), q2jt¼0 is the initial heat flux of the CV model and

q2jt¼0 ¼ � kT0p
ffiffi
e

p
l is the extra initial condition. In addition, this extra

initial condition is not unique, and we can also give other initial
conditions. With this extra initial condition, we can obtain the clas-
sical solution of the CV model

T2ðx; tÞ ¼ T0 1þ e�
t
2s sin

px
l

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
e

p � 1
q

2s
t

0
@

1
A

2
4

3
5: ð31Þ

Obviously, T2ðx; tÞ > 0 and so, for this problem, the CV model
satisfies the third law of thermodynamics. Then we can obtain

the entropy production rate _S2 of the CV model

_S2 ¼qcVT2
0e

�t
s

4sT2 cos2
px
l

�cos

ffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
e

p �1
q

s
t

0
@

1
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffi
e

p �1

s !
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
e

p �1
q

s
t

0
@

1
Aþ1

2
4

3
5:

ð32Þ
The entropy production rate in Eq. (32) is not always positive or

zero. For example, when tan ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
e

p � 1
p

Þ=s
h i

¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
e

p � 1
p

Þ

and x ¼ 0, we can obtain _S2 ¼ qcV T20e
�t
s

4sT2
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
e

pp� 	
< 0. We also

find that no matter how small the relaxation time is, the negative
entropy production rate still appears. In summary, the entropy
production rate must be positive or zero in Fourier’s Law, and for
the single-phase-lagging model, the entropy production rate will
be positive or zero if the relaxation time is enough small. However,
for the CV model, no matter how small the relaxation time is, the
negative entropy production rate still appears. Fig. 4 shows the
entropy production rates which belong to the CV and SPL models.

Here c ¼ qcV T20e
�t
s

4sT2
cos2 px

l and S0 ¼ _S1 or _S2. Obviously, c > 0 and thus,
we can judge if the entropy production rate is positive everywhere
from S0=c. It is not difficult to find that the entropy production rate
of the single-phase-lagging model is positive everywhere.
However, we find negative values appear in the entropy produc-
tion rate of the CV model. Negative values in S0=c mean that the
Fig. 4. Entropy production rates for the CV and SPL models.
entropy production rate is negative everywhere because for every-
where, c > 0. In summary, for the entropy production rate prob-
lem, the single-phase-lagging model seems better than the CV
model. In addition, the violation of the second law of
thermodynamics by the CV model has been discussed by research-
ers [31–34]. It is also worth noting that the negative entropy pro-
duction rate problem caused by the CV model can be avoided in the
framework of extended irreversible thermodynamics [30].

Besides positive entropy production rate, the second law of
thermodynamics requires that systems must tend to equilibrium
spontaneously. For the CV model, the definition of energy integral
[26] for Eq. (5) showing the vibration amplitude of the temperature
field is

EðtÞ ¼
Z Z Z

@T
@r

� �2

þ k
qcVs

ðrTÞ2
" #

dV : ð33Þ

The changing rate of energy integral can be written as

dEðtÞ
dt

¼ �2
s

Z Z Z
@T
@t

� �2

dV ; ð34Þ

which is negative or zero and shows that the vibration amplitude of
systems is always dissipative. In addition, if there is no initial tem-
perature perturbation and difference, a system must keep equilib-
rium because the initial energy integrals are zero, and are not
able to decrease. However, for the single-phase-lagging heat
conduction model, the solutions in Section 3.1 have the form of
boundary conditions TjC ¼ Tjx¼0;l ¼ 0 and initial condition
Tjt¼0 ¼ 0. These solutions mean that a system in equilibrium will
destroy the equilibrium without any perturbation spontaneously,
which violates the second law of thermodynamics. Therefore,
although the CV model as well as the single-phase-lagging model
doesn’t follow the second law of thermodynamics in the problem
of entropy production rate, it does better in physical meaning.
However, the two models both violate the second law of
thermodynamics in classical irreversible thermodynamics.

3.4. On negative temperature

In Section 3.2, we have mentioned that for Fourier’s Law, the
heat conduction equation has maximum principle which guaran-
tees that the maximum values of temperature field must appear
in boundary and initial conditions. Therefore, Fourier’s Law won’t
lead to absolute negative or zero temperature. In general, the tem-
perature field is continuous and therefore, absolute negative tem-
perature will lead to absolute zero temperature. Obviously, this
violates the third law of thermodynamics. So, we need to discuss
this problem in the two models. In addition, the negative absolute
temperature problem of the CV model were studied by numerical
calculations [27–29] and we will discuss this problem by analytical
solutions.

In mathematics, the heat conduction equation of the CV model
doesn’t have maximum principle and so, the maximum values of
temperature may not appear in boundary or initial conditions,
which means that positive temperature in boundary and initial
conditions cannot guarantee positive temperature in the whole
temperature field. In physics, if the initial temperature change rate
@T
@t

��
t¼0 is enough large, the amplitude of temperature will be very

large, which means that the temperature field can reach much
lower or higher than the initial temperature. Therefore, the CV
model can’t guarantee that temperature fields are always positive.
We have mentioned that the heat conduction equation of the
single-phase-lagging model doesn’t have maximum principle
either. Therefore, the single-phase-lagging model can’t guarantee
that the temperature fields are positive either. The solution



Fig. 5. Temperature of the CV and SPL models at x ¼ l=2.
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A sin npx
l sin pt

2s in Section 3.2 is an example which can lead to nega-
tive temperature because A is arbitrary. In Section 3.2 we guaran-
tee the uniqueness of Eq. (26) by considering that there is no heat
conduction when t < 0 and the Laplace transform. We can also use
the Laplace transform to get more conclusions about the problem
of negative temperature. For Eq. (26), we have got Eq. (27) and
for Eq. (5), the Laplace transform is

k
qcV

r2F � ðpþ p2sÞF þ ðpsþ 1ÞTjt¼0 þ s @T
@t

����
t¼0

¼ 0: ð35Þ

Eq. (27) contains only the initial temperature Tjt¼0, but Eq. (35)
contains not only the initial temperature ujt¼0 but also the initial
temperature change rate @T

@t

��
t¼0. This means that for the single-

phase-lagging model, the temperature field is only determined
by the initial and boundary temperature but for the CV model,
the initial temperature change rate will also take effect. So, the
CV model needs the initial temperature change rate to guarantee
positive temperature but the single-phase-lagging model doesn’t
need. However, for general problems, we only require Tjt¼0 > 0
and there is no special requirement for initial temperature change
rate @T

@t

��
t¼0 (for some temperature jump problems, @T

@t

��
t¼0 could even

be infinite). Therefore, the CV model is more likely to lead to neg-
ative or zero temperature than the single-phase-lagging model
because of the influence of the initial temperature change rate.
Next, we will provide an example. Consider a heat conduction
problem with heat source

/ ¼ T0 sin
px
l

2pqcV
s

cos
2pt
s

þ kp2

l2
sin

2pt
s

� �
: ð36Þ

The initial conditions are taken Tjt¼0 ¼ T0, Tjt¼0þ ¼ T0ð1þ bÞ, the
boundary conditions are taken Tjx¼0;l ¼ T0ð1þ bÞ, b > 0 and the
physical properties satisfy ks

qcV l
2 ¼ 4. For this problem, if we use

the single-phase-lagging model, we can get its classical solution

T3ðx; tÞ ¼ T0 1þ bsgnt þ sin
2pt
s

sin
px
l

� �
: ð37Þ

It is worth mentioning that if we use Fourier’s Law, the solution
is still Eq. (37). Obviously, T3ðx; tÞ > 0 and for this problem, the
single-phase-lagging model satisfies the third law of thermody-
namics. We have mentioned that the CV model needs two initial
conditions to determine the solution. So if we use the CV model,
we need an extra initial condition and this extra initial condition
should make the two models’ initial state have a certain ‘‘consis-
tency”. This time, we let them have the same initial temperature
change rate

@T3

@t

����
t¼0

¼ @T4

@t

����
t¼0

¼ 2pT0

s
cos

2pt
s

sin
px
l
¼ 2pT0

s
sin

px
l
: ð38Þ

@T3
@t

��
t¼0 is the initial temperature change rate of the single-phase-

lagging model determined by classical solution Eq. (37), and @T4
@t

��
t¼0

is the initial temperature change rate of the CV model. Then we
can get @T4

@t

��
t¼0 ¼ 2pT0

s cos 2pt
s sin px

l ¼ 2pT0
s sin px

l . This extra initial con-
dition is not unique and for telegrapher’s equations, the most com-
mon initial conditions are initial temperature change rate and
initial temperature. That’s why we give this extra initial condition.
With this extra initial condition, we can get the classical solution
of the CV model

T4ðx; tÞ ¼ T0

1þ bsgnt þ ð4p2 þ 1Þ sin 2pt
s sin px

l

þ 4pffiffiffiffiffiffiffiffiffiffiffiffi
16p2�1

p e�
t
2s sin

ffiffiffiffiffiffiffiffiffiffiffiffi
16p2�1

p
2s t sin px

l

" #
: ð39Þ

T4ðx; tÞ in Eq. (39) is not always positive. For example, for
t ¼ 3

4 sþ ns, if n tends to infinity, t will also tend to infinity and

the term 4pffiffiffiffiffiffiffiffiffiffiffiffi
16p2�1

p e�
t
2s sin

ffiffiffiffiffiffiffiffiffiffiffiffi
16p2�1

p
2s t sin px

l will tend to zero. Then we get
T4ðx; tÞ ! T0 1þ bsgnt þ ð4p2 þ 1Þ sin 2pt
s

sin
px
l


 �
: ð40Þ

Let b be very small and x ¼ l
2, and then we get

T4ðx; tÞ ! T0ð1� 4p2Þ < 0 which has nothing to do with the relax-
ation time. We find that for this problem, the CV model leads to
negative temperature no matter how small the relaxation time is
but the single-phase-lagging model doesn’t.

In addition, although this is an unsteady heat conduction prob-
lem whose temperature and heat flux fields are both unsteady, the
single-phase-lagging model and Fourier’s Law lead to exactly same
temperature and heat flux fields. Obviously, it is impossible for the
CV model. That is because if the temperature and heat flux fields
satisfy both Fourier’s Law and the CV model, @q

@t must be zero. For
this problem, the relative deviation between the CV and SPL mod-
els (or Fourier’s law) is
g ¼ T2ðx; tÞ � T1ðx; tÞ
T1ðx; tÞ

¼
4p2 sin 2pt

s sin px
l þ 4pffiffiffiffiffiffiffiffiffiffiffiffi

16p2�1
p e�

t
2s sin

ffiffiffiffiffiffiffiffiffiffiffiffi
16p2�1

p
2s t sin px

l

1þ bsgnt þ sin 2pt
s sin px

l

� � : ð41Þ

When time tends to infinity, Eq. (40) tends to
4p2 sin 2pt

s sin px
l

� �
= 1þ bsgnt þ sin 2pt

s sin px
l

� �
. It is still not small.

For example, when t ¼ 3
4 sþ ns; x ¼ l

2 and n tends to infinity, this

relative deviation tends to � 4p2

b . If b is very small, the relative devi-
ation will still be very large and this result has nothing to do with
the relaxation time either. Therefore, the deviation between the CV
model and the single-phase-lagging model (or Fourier’s law) can
also be very large no matter how small the relaxation time is and
won’t decay over time. Fig. 5 shows the temperature at x ¼ l=2
(b = 0.5) which belongs to the CV model ½T4ðl=2; tÞ� and the
single-phase-lagging model ½T3ðl=2; tÞ�. Obviously, negative tem-
perature appears in the solution of the CV model which has far lar-
ger amplitude than the solution of the single-phase-lagging model.
However, Eq. (37) and Fig. 5 show that the solution of the single-
phase-lagging model must be positive. From Fig. 5, we find that
the CV model leads to a far stronger temperature vibration than
the single-phase-lagging model, and this phenomenon causes
negative temperature problem in the CV model rather than the
single-phase-lagging model.
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4. About higher order terms

In this section, we will discuss whether using higher order

approximation or measuring the quantity @nq
@tn can reduce the defec-

tion caused by first-order approximation and increase the approx-
imation degree. It is necessary to point out that Taylor series
approximation of qðx; y; z; t þ sÞ needs the existence of differential
term(s) when s! 0. Unfortunately, this condition is usually inva-
lid. For example, in Sections 2.1.1 and 2.1.2, it is not difficult to find
that although boundary and initial conditions are infinitely differ-
entiable for any s > 0, lims!0

@q
@t doesn’t exist. Because differential

term(s) @nq
@tn may not exist when s ! 0, Taylor series approximation

may be meaningless either. This problem is caused by the bound-
ary conditions TðtÞjC. Because the heat flux fields are not deter-
mined functions without boundary and initial conditions, it is
better to express qðx; y; z; tÞ as
qðx; y; z; tÞ ¼ q TðtÞjC; Tðx; y; zÞjt¼0ð Þ; ð42Þ
and express qðx; y; z; t þ sÞ as
qðx; y; z; t þ sÞ ¼ q Tðt þ sÞjC; Tðx; y; zÞjt¼0ð Þ: ð43Þ

Formally speaking, first-order approximation of qðx; y; z; t þ sÞ
can be written as

qðx; y; z; t þ sÞ ¼ q Tðt þ sÞjC; Tðx; y; zÞjt¼0ð Þ

¼ qþ s @q
@ðTjCÞ

@ðTjCÞ
@t

þ RðsÞ; ð44Þ

where RðsÞ is the remainder. This approximation needs the exis-

tence of @q
@ðTjCÞ and

@ðTjCÞ
@t when s! 0. However, as counterexamples,

Sections 2.1.1 and 2.1.2 show that lims!0
@ðTjCÞ
@t may not exist even

if TjC are infinitely differentiable for any s > 0. What’s more,

whether the remainder RðsÞ satisfies lims!0
RðsÞ
s � 0 also depends

on boundary conditions.
On the other hand, higher order approximation leads to higher

order time derivative terms in the heat conduction equation. For
the SPL model, there is only a first-order time derivative term @T

@t

in the heat conduction equation. However, nth-order approxima-
tion will lead to higher order derivative terms from second-order

to (n + 1)th-order @2T
@t2

, @3T
@t3

. . . @
nþ1T
@tnþ1 . Therefore, higher order approxi-

mation will lead to more initial conditions needed to determine
the solution, and stronger influence on solutions will be caused
by initial conditions. It seems that the higher the order of the
approximation is, the larger the difference between the approxi-
mate equation and original equation Eq. (26) is. In Section 3.4,
we have mentioned that the CV model is more likely to cause
unphysical problems than the SPL model because of the influence
by the initial temperature change rate @T

@t

��
t¼0. However, for higher

order approximation, higher order temperature change rates
@2T
@t2

���
t¼0

; @3T
@t3

���
t¼0

. . .
� 	

will also have an impact. From the physical

point of view, the ordinary physical meaning without approxima-
tion is time lagging. However, the physical meaning of first-order
approximation can be considered as impedance or damping.
Higher order approximation will lead to higher order damping or
impedance terms. Therefore, from physical point of view, higher
order approximation can’t reduce or even increase the physical
difference.

Therefore, using higher order approximation or measuring the

quantity @nq
@tn can neither reduce the deviation caused by

first-order approximation nor avoid unphysical problems. The
application of higher order terms is not enough to discuss the
approximation degree problem and might be impossible because
the boundary conditions will also have an influence on the
remainder RðsÞ and the existence of lims!0
@nq
@tn also depends on

the boundary conditions.”
5. Conclusions

In this paper we demonstrate that Taylor series approximation
itself has some defects when used in heat conduction models. First,
the relative deviation between qðt þ sÞ and qþ s @q

@t can be very
large no matter how small the relaxation time s is. Second, this
approximation can lead the originally positive entropy production
rate to be negative, which violates the second law of thermody-
namics. Using Taylor series approximation to derive or extend heat
conduction models may be defective because it will cause large
deviation and essential difference in mathematics and physics.
Although there is a certain ‘‘approximation” relationship between
the single-phase-lagging model and the CV model, there are essen-
tial differences between them as follows:

1. Their physical meanings are different. The single-phase-lagging
model means that there is a time lag between the temperature
gradient and the heat flux response, and the speed of the heat
flux response to the temperature gradient is not infinite. The
CV model means that there is a phase difference between the
temperature gradient and the heat flux, and the speed of tem-
perature perturbation itself is not infinite.

2. Great difference in mathematics exists between them. For the
CV model, more initial conditions are needed than the single-
phase-lagging model for getting their solutions. In addition,
the solution of the heat conduction equation of the CV model
has the uniqueness but for the single-phase-lagging model, this
uniqueness does not exist in some cases. However, for the
single-phase-lagging model, we can guarantee the uniqueness
by considering that there is no heat conduction process when
t < 0, and using the method of the Laplace transform.

3. The single-phase-lagging model can guarantee the entropy pro-
duction rate to be positive as long as the relaxation time is
enough small. However, for the CV model, no matter how small
the relaxation time is, the negative entropy production rate may
appear. The CV and SPL models may both lead to negative or
zero temperature, and the CV model is more likely to lead to
negative or zero temperature than the single-phase-lagging
model.

4. For an unsteady problem whose temperature and heat flux
fields are both unsteady, the single-phase-lagging model and
Fourier’s law can lead to exactly same temperature and heat
flux fields, but quite different for the CV model. The deviation
between the CV model and the single-phase-lagging model
(or Fourier’s law) can also be very large no matter how small
the relaxation time is, and it won’t decay over time.

5. In mathematics, higher order approximation will lead to larger
difference between the approximate equation and original equa-
tion than first-order approximation. It also complicates the exis-
tence problem of differential term(s) and influence by the initial
conditions. In physics, higher order approximation will lead to
higher order damping or impedance terms which can’t reduce
or even increase the physical meaning difference. Therefore,
higher order approximation can’t solve the mathematical and
physical problems caused by first-order approximation.
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