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The classical variational principle does not exist for parabolic and hyperbolic heat conduction equations,
which has led to the demand for special variational methods for heat conduction. O’Toole (1967) first
used Laplace transforms for the variational principle only for Fourier’s law with the first type of boundary
condition. In this paper, the Laplace transform strategy is extended to other parabolic and hyperbolic heat
conduction models and other types of boundary conditions. Generalized variational principles are given
for heat conduction models including Fourier’s law, the Cattaneo–Vernotte (CV) model, the Jeffrey model,
the two-temperature model and the Guyer–Krumhansl (GK) model, based on Laplace transforms. The
Laplace transform method transforms the heat conduction equations of these models into linear varia-
tional equations whose variational principles are already known. For the three standard types of bound-
ary conditions, these generalized variational principles are strictly equivalent to the heat conduction
equations for these models. The Laplace transform method has stronger convergence in infinite temporal
domain problems. In physics, the Laplace transform method is understood as replacing the time dimen-
sion with the frequency of the temperature change and the rate of the entropy change.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Many efforts have beenmade to formulate variational principles
for dissipative processes including mass diffusion and heat conduc-
tion. The classical methods were pioneered by Onsager et al. [1–3],
Prigogine et al. [4], Biot [5,6], Gyarmati et al. [7,8]. Many other
methods have been developed [9–13] with a rather good classifica-
tion of thesemethods in the review by V́an andMuschik [14]. These
variational principles have been applied to such fields as approxi-
mation methods [15,16] and thermal analyses of some structures
[17,18]. In dynamics, the classical variational principle generalizes
the physical laws or provides methods for solving the differential
equations. However, the conditions for the existence of the classical
variational principle are so strict thatmany heat conductionmodels
including Fourier’s law do not have classical variational principle
model. Therefore, these ‘‘variational principles” which go beyond
the classical variational principle should be called ‘‘generalized
variational principles”. In nonequilibrium thermodynamics which
often involve parabolic equations that do not satisfy the classical
variational principle, these generalized variational principles can
help us better understand the physical processes, develop better
numerical methods and clarify the solution characteristics [14,19].
O’Toole [20] used Laplace transforms to provide variational
principles for time-dependent transport processes with Laplace
transform [21] Uðx; y; z; pÞ of a function uðx; y; z; tÞ expressed as
Uðx; y; z; pÞ ¼ Rþ1

0 uðx; y; z; tÞe�ptdt. O’Toole’s gave a generalized
variational principle for Fourier’s law based on Laplace transforms.
However, strictly speaking, O’Toole’s variational principle for the
Fourier heat conduction is only for the first type of boundary con-
dition (Dirichlet), which specifies the boundary temperature, and
he did not discuss under what circumstances this Laplace trans-
form method is feasible. However, there are also two other types
of the boundary conditions which occur frequently in heat conduc-
tion processes, the second (Neumann) and third (Robin) types of
boundary conditions. The second type specifies the boundary heat
flux while third type specifies both the heat transfer coefficient and
the ambient temperature. This work presents generalized varia-
tional principles for Fourier heat conduction for all three types of
boundary conditions. The physical feasibility is then used to pro-
vide a condition which guarantees that the generalized variational
principle is strictly equivalent to the Fourier heat conduction equa-
tion for various types of the boundary conditions.

The variational problem for non-Fourier heat conduction mod-
els, which is related to thermal transport in nanostructures and
laser-heating, is also discussed because although Fourier’s law of
heat conduction accurately describes classical heat conduction
problems, it has some limitations [22–25]. Several modified heat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.08.065&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.065
mailto:caoby@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.065
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


S.-N. Li (李书楠), B.-Y. Cao (曹炳阳) / International Journal of Heat and Mass Transfer 103 (2016) 1176–1180 1177
conduction models have then been proposed such as the
Cattaneo–Vernotte (CV) model [26,27], the Jeffrey model [23],
the Guyer–Krumhansl (GK) model [28], the two-temperature
model [29]. The Laplace transform method also provides general-
ized variational principles for these non-Fourier heat conduction
models for all three types of boundary conditions. The convergence
and physical meaning of the Laplace transform method are also
discussed.

2. Generalized variational principles based on Laplace
transforms

2.1. Generalized variational principle for Fourier’s law

Fourier’s law and the energy conservation equation are
expressed as

qþ krT ¼ 0; ð1Þ

r � q ¼ �qcV @T
@t

: ð2Þ

where q is the heat flux, k is the thermal conductivity, T is the tem-
perature, q is the mass density and cV is the specific heat. The ther-
mal conductivity k, the specific heat cV and particularly the mass
density q are positive and constant in time and space. Eqs. (1)
and (2) can be combined to give the heat conduction equation

@T
@t

¼ k
qcV

r2T: ð3Þ

Applying the Laplace transform F ¼ Rþ1
0 Te�ptdt to Eq. (3) leads

to

k
qcV

r2F ¼ pF � Tjt¼0: ð4Þ

Eq. (4) is a linear variational equation whose variational princi-
ple is already known [30–32]. For the first type of boundary condi-
tion, the given boundary temperature means that the Laplace
transform of the boundary temperature is also given. Therefore,
the first type of boundary condition for the temperature is also
the first type of boundary condition for F. The generalized varia-
tional principle for the first type of boundary condition is:

d
ZZZ

D

k
qcV

jrFj2 þ pF2 � 2FðTjt¼0Þ
� �

dV

8<
:

9=
; ¼ 0; ð5Þ

where D is the spatial domain. The second and third types of bound-
ary conditions can be expressed as

ð�q � n!þhTÞ
���
C
¼ r; ð6Þ

where C is the boundary of D, h is the heat transfer coefficient and r
is a constant. Substituting Fourier’s law into Eq. (6) leads to

k
@T
@n

þ hT
� �����

C

¼ r: ð7Þ

The Laplace transform of Eq. (7) is

k
@F
@n

þ hF
� �����

C

¼ r
p
: ð8Þ

The second and third types of boundary conditions for the tem-
perature are then also the second and third types of boundary
problems for F. Therefore, the generalized variational principle
for the second and third types of boundary conditions are
d
Z Z Z

D

kjrFj2þqcVpF2�2qcVFðTjt¼0Þ
h i

dVþ
Z
C

hF2�2
Fr
p

� �
dS

8<
:

9=
;¼0:

ð9Þ
2.2. Engineering equivalence of the generalized variational principle

These variational principles are shown here to be equivalent to
the heat conduction equation based on the physical feasibility of
the boundary conditions. In engineering heat conduction problem
which is physically feasible, the boundary and initial temperatures
must be finite. In addition, the heat conduction equation, Eq. (3), is
a parabolic equation whose maximum principle guarantees that
the maximum values of the temperature field must appear in the
boundary or initial conditions. Therefore, the whole temperature
field must also be finite, which guarantee the integral
F ¼ Rþ1

0 Te�ptdt to be convergent. Besides the temperature, the heat
transfer coefficient, h, and rmust also be finite. Thus, for physically
feasible heat conduction problems, the Laplace transforms of the
temperature field and boundary conditions must exist, which
shows the feasibility of Eqs. (4) and (8). In addition, Eqs. (4) and
(8) are all linear variational types which leads to the equivalence
for the variational principles expressed by Eqs. (5) and (9). Thus
these variational principles can determine the existence and
uniqueness of F. These variational principles can then be shown
to be strictly equivalent to Eq. (3). First, T must be continuous in
time because the heat conduction equation has a time differential
term @T

@t . The convergence of the Laplace transform and the continu-
ity of T guarantees one-to-one correspondence between T and F
from Lerch’s Theorem [21]. Therefore, the variational principles
expressed by Eqs. (5) and (9) determine not only the existence
and uniqueness of F but also determine the existence and unique-
ness of T . In summary, for various finite boundary conditions in
engineering problems, the generalized variational principles
expressed by Eqs. (5) and (9) are equivalent to Eq. (3).

2.3. Generalized variational principle for the CV model

The CV model [26,27] is expressed as

qþ s @q
@t

þ krT ¼ 0; ð10Þ

where s is the thermal relaxation time. The heat conduction equa-
tion of the CV model is

@T
@t

þ s
@2T
@t2

¼ k
qcV

r2T: ð11Þ

Taking the Laplace transform of Eq. (11) leads to

k
qcV

r2F � ðpþ sp2ÞF þ ðspþ 1ÞTjt¼0 þ s @T
@t

����
t¼0

¼ 0: ð12Þ

Eq. (12) is also a linear variational equation. Similar to Fourier’s
law, the first type of boundary condition for the temperature for
Eq. (12) is also the first type of boundary condition for F. Therefore,
the generalized variational principle for the first type of boundary
condition is

d
Z Z Z

D

k
qcV

jrFj2þðpþsp2ÞF2�2 ðspþ1ÞTjt¼0þs@T
@t

����
t¼0

� �
F

� �
dV

8<
:

9=
;¼0:

ð13Þ
For the second and third types of boundary conditions, substi-

tuting the CV model into Eq. (6) leads to
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krT þ s @q
@t

� �
� n!þhT

� �����
C

¼ r: ð14Þ

The Laplace transforms of Eqs. (14) and (10) are

krF þ psQ � sqjt¼0ð Þ � n!þhF
h i���

C
¼ r

p
; ð15Þ

Q þ psQ � sqjt¼0 þ krF ¼ 0; ð16Þ
where Q ¼ Rþ1

0 qe�ptdt. From Eq. (16),

Q ¼ � krF � sqjt¼0

1þ ps
: ð17Þ

Substituting Eq. (17) into Eq. (15) leads to

k
1þ ps

@F
@n

� s
1þ ps

qjt¼0 � n
!	 


þ hF
� �����

C

¼ r
p

ð18Þ

From Eq. (18), the second and third types of boundary condi-
tions for the temperature are also the second and third types of
boundary conditions for F. Then, the generalized variational princi-
ple for the second and third types of boundary conditions is:

d
Z Z Z

D

kjrFj2þqcV ðpþsp2ÞF2�2qcV ðspþ1ÞTjt¼0þs@T
@t

����
t¼0

� �
F

� �8<
:

9=
;dV

þ
Z
C

ðspþ1ÞhF2�2
Frðspþ1Þ

p
�2Fs qjt¼0 � n

!	 
� �
dS¼0: ð19Þ

However, ðqjt¼0 � n
!Þ is still unknown but can be expressed from the

boundary and initial conditions. Equation (6) at t ¼ 0 gives

�qjt¼0 � n
!þhTjt¼0

	 
���
C
¼ r: ð20Þ

Substituting Eq. (20) into Eq. (19) leads to

d
Z Z Z

D

kjrFj2þqcV pþsp2
� �

F2�2qcV ðspþ1ÞTjt¼0þs@T
@t

����
t¼0

� �
F

� �
dV

8<
:
þ
Z
C

ðspþ1ÞhF2�2
Frðspþ1Þ

p
�2Fs hTjt¼0�rð Þ

� �
dS
�
¼ 0; ð21Þ

which is the final generalized variational principle for the second
and third types of boundary conditions.

2.4. Generalized variational principle for the Jeffrey model

The Jeffrey model [23] is expressed as

qþ s @q
@t

þ krT þ kFs
@

@t
ðrTÞ ¼ 0; ð22Þ

where kF is the thermal conductivity for Fourier heat conduction
and k is the total thermal conductivity. The heat conduction equa-
tion for the Jeffrey model is

1
s
@T
@t

þ @2T
@t2

¼ k
qcVs

r2T þ kF
qcV

@

@t
ðr2TÞ: ð23Þ

The Laplace transform of Eq. (23) is

k
qcVs

þ pkF
qcV

� �
r2F � p2 þ p

s

	 

F þ pþ 1

s

� �
Tjt¼0 þ

@T
@t

����
t¼0

� kF
qcV

r2T
���
t¼0

¼ 0; ð24Þ

which is still a linear variational equation. As with the other cases,
the first type of boundary condition for the temperature is also the
first type of boundary condition for F. Therefore, the generalized
variational principle for the first type of boundary condition is
d
ZZZ

D

k
qcV s

þ pkF
qcV

	 

jrFj2 þ p2 þ p

s

� �
F2�

2 pþ 1
s

� �
T
��
t¼0 þ @T

@t

��
t¼0 � kF

qcV
r2T

���
t¼0

h i
F

8><
>:

9>=
>;dV

8><
>:

9>=
>; ¼ 0 ð25Þ

The method in Section 2.3 is again used for the second and third
types of boundary conditions. Substituting Eq. (22) into Eq. (6) leads
to

krT þ s @q
@t

þ kFs
@

@t
ðrTÞ

� �
� n!þhT

� �����
C

¼ r: ð26Þ

The Laplace transforms of Eqs. (26) and (22) are

krFþpsQ �sqjt¼0þkFpsrF�kFsrTjt¼0ð Þ � n!þhF
h i���

C
¼r
p
; ð27Þ

Q þ psQ � sqjt¼0 þ krF þ kFpsrF � kFsrTjt¼0 ¼ 0: ð28Þ
From Eq. (28),

Q ¼ � krF þ kFpsrF � kFsrTjt¼0 � sqjt¼0

1þ ps
: ð29Þ

Substituting Eq. (29) into Eq. (27) leads to

kþ kFps
1þ ps

� �
@F
@n

� s
1þ ps

ðkFrTjt¼0 þ qjt¼0Þ � n
!h i

þ hF
� �����

C

¼ r
p
;

ð30Þ
which are also the second and third types of boundary conditions
for F. Then, the generalized variational principle for the second
and third types of boundary conditions is

d
Z Z Z

D

ðkþpskFÞjrFj2þqcVs p2þp
s

	 

F2�

n
2qcVsF ðpþ1

s
ÞT
����
t¼0

�8<
:
þ@T
@t

����
t¼0

� kF
qcV

r2T
���
t¼0

��
dV

þ
Z
C

ðspþ1ÞhF2�2
Frðspþ1Þ

p
�2Fs ðkFrTjt¼0þqjt¼0Þ � n

!h i� �
dS
�
¼0:

ð31Þ
Eq. (20) still holds and the final generalized variational principle is

d
Z Z Z

D

ðkþpskFÞjrFj2þqcVs p2þp
s

	 

F2�

n
2qcVsF pþ1

s

� �
T
����
t¼0

�8<
:
þ@T
@t

����
t¼0

� kF
qcV

r2T
���
t¼0

��
dV

þ
Z
C

ðspþ1ÞhF2�2
Frðspþ1Þ

p
�2Fs ðkFrTjt¼0Þ � n

!þhTjt¼0�r
h i� �

dS
�
¼0:

ð32Þ
2.5. Generalized variational principles for other models

This method can also be used to derive generalized variational
principles for other heat conduction models. This section provides
generalized variational principles for two more complex models
using the Laplace transform method.

Anisinov et al. [29] proposed the two-temperature model for
metals with the heat conduction equation expressed as

r2Te þ ae

C2
E

@

@t
ðr2TeÞ ¼ 1

aE

@Te

@t
þ 1

C2
E

@2Te

@t2
; ð33Þ

where Te is the electron temperature, aE is the equivalent thermal
diffusivity, ae is the thermal diffusivity of the electrons and CE is
the heat wave velocity. The Laplace transform of Eq. (33) is
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1þ pae

C2
E

 !
r2Fe � p

aE
þ p2

C2
E

 !
Fe þ 1

C2
E

prTejt¼0 þ
@Te

@t

����
t¼0

� �

þ 1
aE

rTejt¼0 �
ae

C2
E

r2Te

���
t¼0

¼ 0: ð34Þ

For the first type of boundary condition, the generalized variational
principle is

d
Z Z Z

D

1þpae

C2
E

 !
jrFej2þ p

aE
þ p2

C2
E

 !
F2
e

(8<
:
�2

1
C2
E

prTejt¼0þ
@Te

@t

����
t¼0

� �
þ 1
aE

rTejt¼0�
ae

C2
E

r2Te

���
t¼0

" #
Fe

)
dV

)
¼0:

ð35Þ
For the second and third types of boundary conditions, the

methodology is the same as in Sections 2.3 and 2.4. The final gen-
eralized variational principle is

d
ZZZ

D

1þ pae

C2
E

 !
jrFej2 þ p

aE
þ p2

C2
E

 !
F2
e

(8<
:
�2Fe

1

C2
E

prTejt¼0 þ
@Te

@t

����
t¼0

� �
þ

"
1
aE

rTejt¼0 �
ae

C2
E

r2Te

���
t¼0

#)
dV

þ
Z
C

h
k

1þ pae

C2
E

 !
F2
e �

2Fr
pk

1þ pae

C2
E

 !( )
dS

)
¼ 0: ð36Þ

The GK model [28] is a classical model for phonon heat conduc-
tion whose heat conduction equation is

r2T þ 9sN
5

@

@t
ðr2TÞ ¼ 2

sRc2
@T
@t

þ 3
c2

@2T
@t2

; ð37Þ

where sN is the single-phonon relaxation time for normal processes,
sR is the momentum loss relaxation time and c is the isothermal
first-sound velocity. It is worth mentioning that variational prob-
lems about the GK model have been discussed from different views
[33–34]. The Laplace transform of Eq. (37) is

1þ 9sN
5

� �
r2F � 2p

sRc2
þ 3p2

c2

� �
F � 9sN

5
r2T

���
t¼0

þ 2
sRc2

þ 3p
c2

� �
T
����
t¼0

þ 3
c2

@T
@t

����
t¼0

¼ 0: ð38Þ

For the first type of boundary condition, the generalized varia-
tional principle is

d
Z Z Z

D

1þ9sN
5

� �
jrFej2þ 2p

sRc2
þ3p2

c2

� �
F2�2

2
sRc2

þ3p
c2

� �
T
����
t¼0

��8<
:
þ 3
c2

@T
@t

����
t¼0

�9sN
5

r2T
���
t¼0

�
F
�
dV
�
¼0: ð39Þ

For the second and third types of boundary conditions, the method-
ology is the same as in Sections 2.3 and 2.4. The final generalized
variational principle is

d
ZZZ

D

f 1þ 9sN
5

� �
jrFej2 þ 2p

sRc2
þ 3p2

c2

� �
F2

8<
:
�2

2
sRc2

þ 3p
c2

� �
T
����
t¼0

þ 3
c2

@T
@t

����
t¼0

� 9sN
5

r2T
���
t¼0

� �
FgdV

þ
Z
C

1þ 9sN
5

� �
3sNpc2Cp

5 � c2Cp

3

	 
 ðpþ 1
sR
ÞhF2

�8<
:

�2F 2rþ r
sRp

� hTjt¼0 þ
3sNc2Cp

5
rTjt¼0 � n

!
� ���

dS
�

¼ 0 ð40Þ
3. Characteristic of the Laplace transform method

3.1. Convergence

Generally speaking, the temporal domain of the heat conduc-
tion problem is infinite which requires the convergence of the inte-
gral in the temporal domain. The Laplace transform method
provide stronger convergence for heat conduction variational prin-
ciples because a convergence factor, e�pt , is added by the Laplace
transform. For example, the heat conduction equation for steady
Fourier heat conduction is

rðkrTÞ ¼ 0: ð41Þ
The variational principle of Eq. (41) is

d
ZZZ

D

kjrTj2
h i

dV

8<
:

9=
; ¼ 0 ð42Þ

For Eq. (42), the integral in the temporal domain is

Z þ1

0
dt

ZZZ
D

½kjrTj2�dV
8<
:

9=
; ¼ limt!þ1 t

ZZZ
D

kjrTj2
h i

dV

8<
:

9=
;

¼ þ1 ð43Þ
which is not convergent. However, with the Laplace transform
method, the integral of the steady variational principle isZZZ

D

k
qcV

jrFj2 þ pF2 � 2FðTjt¼0Þ
� �

dV : ð44Þ

For steady-state problems,

F ¼
Z þ1

0
Te�ptdt ¼ T

p
: ð45Þ

Substituting Eq. (45) into Eq. (44) leads toZZZ
D

k
qcVp2 jrFj2 þ T2

p
� 2

T
p
ðTjt¼0Þ

" #
dV ; ð46Þ

which is convergent.

3.2. Physical meaning

The Laplace transform separates the temperature fields into
components with different frequencies, Imp, and different growth
rates in exponent Rep, where Rep is the real part of p and Imp is
the imaginary part of p. The physical meaning of Imp is clearly,
the frequency of the temperature variation. Rep shows the temper-
ature growth rate as eReðpÞ and has a further physical meaning. For
pure heat conduction problems, the entropy per unit volume, S, can
be calculated as

TdS ¼ qcVdT: ð47Þ
From Eq. (47),

T ¼ C1e
S

qcV ; ð48Þ
where C1 is a constant. Therefore, the growth rate given by the
exponential is expressed as 1

qcV
dS
dt. So, the Laplace transform also

breaks the temperature field into components with different rates
of entropy change. The Laplace transform also transforms
Tðx; y; z; tÞ into Fðx; y; z;pÞ. Thus, the Laplace transform method
replaces the time dimension with the frequency and the rate of
entropy change. In other fields, e.g. signaling system, the Laplace
transform, where Rep–0, is usually considered as an improvement
of Fourier transformation where Rep ¼ 0. When Rep < 0, the
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Laplace transform could have a stronger convergence than Fourier
transformation’s. Therefore, the effect of Rep, which is added by
the Laplace transform, is considered to improve the convergence
for Fourier transformation. What’s more, Imp is considered to have
a very important engineering and physical meaning, that is the fre-
quency spectrum, while Rep is considered as a mathematical
method for improving convergence. However, from the above
results, we find that for heat conduction problems, Rep is not only
a mathematical method but also the rate of entropy change spec-
trum, which is also very important and meaningful. Different from
other fields, for heat conduction problems, both Rep and Imp have
the same important position.

4. Conclusions

In this paper, O’Toole’s idea of using Laplace transforms to
obtain generalized variational principles is extended to other para-
bolic and hyperbolic heat conduction models and other types of
the boundary conditions. This Laplace transform method has the
following characteristics.

(1) The Laplace transform method turns the parabolic and
hyperbolic heat conduction equations for various models
into linear variational equations with known variational
principles. Generalized variational principles are then
obtained for Fourier’s law, the CV model, the Jeffrey model,
the two-temperature model and the GK model.

(2) The generalized variational principles given by the Laplace
transform method are equivalent to the heat conduction
equation with finite boundary conditions. In addition, for
the three common types of boundary conditions, the Laplace
transform does not change the type of the boundary condi-
tion which also simplifies the variational problems.

(3) The Laplace transform method provides stronger conver-
gence for the heat conduction variational principles because
the convergence factor e�pt is added by the Laplace trans-
form. The physical meaning of this method is demonstrated
to replace the time dimension with the frequency of the
temperature change and the rate of entropy change by trans-
forming Tðx; y; z; tÞ into Fðx; y; z; pÞ.
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