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Vortex is one of the most important characteristics for flow field, but for heat conduction, vortex prob-
lems have not been studied. In this paper, heat vortex is mainly investigated from the viewpoint of heat
flux rotation. The heat flux rotation is calculated and discussed for Fourier’s law and typical non-Fourier
heat conduction models, including the Cattaneo-Vernotte (CV) model, Jeffrey model, Guyer-Krumhansl
(GK) model and dual-phase-lagging (DPL) model. It is found that the change rule of heat flux rotation
is only determined by the heat conduction law, and the change rule can also reflect certain relaxation
process in non-Fourier heat conduction. These conclusions can provide a perspective for proving non-
Fourier heat conduction, which is more rigorous than heat wave phenomena or finite propagation veloc-
ity. The heat flux rotation can also shows particular characteristics of non-Fourier heat conduction, which
is quite different from mechanical phenomena. Different from the heat flux rotation, the entropy flux
rotation for non-Fourier heat conduction does not change in an established rule.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex is one of the most important and fundamental definition
for flow field. In fluid mechanics, fairly in-depth discussions have
been made on vortex, which is called as ‘‘the sinews and muscles
of fluid motions” [1], showing the indispensability of vortex. Vor-
tex motion is closely related to shear in fluid flow, which reflects
the constitutive relations and flow laws in fluid mechanics. In
many fluid mechanics problems, fluid flow is often coupled with
heat transfer, which relates to other flow fields about heat conduc-
tion, including heat flow field and entropy flow field. Besides fluid
mechanics, these fields are rather important for heat transfer itself
and irreversible thermodynamics. For heat flow and entropy flow,
vortex motion is also a necessary movement mode, and similar to
fluid flow, vortex in heat flow field or entropy flow field can also
reflect characteristics of heat transfer laws. However, vortex is
not much investigated from the viewpoint of heat transfer laws.

Different heat conduction models have been proposed, and
Fourier’s law of heat conduction is most frequently used. Fourier’s
law shows the connection between temperature gradient and heat
flux

qþ kFrT ¼ 0; ð1Þ
where q is the heat flux, T is the temperature and kF is the Fourier
thermal conductivity, which is generally expressed as kF ¼ kFðTÞ
(including constant). The energy conservation equation is

/�r � q ¼ qcV
@T
@t

; ð2Þ

where / is the heat source, q is the mass density and cV is the speci-
fic heat. Eqs. (1) and (2) can be combined to give the heat conduc-
tion equation

r½kFðTÞrT� þ / ¼ qcV
@T
@t

: ð3Þ

In recent years, it is revealed that Fourier’s law cannot predict the
supertransient and high heat flux processes [2–7]. To get over these
limitations, several modified non-Fourier heat conduction models
were proposed. The Cattaneo-Vernotte (CV) model [8,9] is the most
typical and classical one

qþ s @q
@t

þ kCVrT ¼ 0; ð4Þ

where s is the thermal relaxation time and kCV is the thermal con-
ductivity for the CV model. Jeffrey model [3] is an extension of the
CV model, which could be considered as a linear superposition of
Fourier’s law and the CV model

qþ s @q
@t

þ kðTÞrT þ kFðTÞs @

@t
ðrTÞ ¼ 0; ð5Þ
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where kðTÞ is the total thermal conductivity. The Guyer-Krumhansl
(GK) model [10] is a classical model for pure phonon heat
conduction

@q
@t

þ c2cl
3

rT þ 1
sR

q ¼ 3sNc2

5
rðr � qÞ; ð6Þ

where cl is the phonon specific heat, sN is the single-phonon relax-
ation time for normal processes, sR is the momentum loss relax-
ation time and c is the isothermal first-sound velocity. The dual-
phase-lagging (DPL) model [11], which considers the influence of
temperature relaxation, is often Taylor expanded as [12–15]

qþ sq
@q
@t

þ kDPL rT þ sT
@

@t
ðrTÞ

� �
¼ 0; ð7Þ

where kDPL is the thermal conductivity for the CV model, sq is the
relaxation time of the heat flux and sT is the relaxation time of tem-
perature gradient. There are also other heat conduction models,
such as the two-temperature (T-T) model [16], the thermomass
theory for heat conduction [17–21], alternative approaches to the
analysis of the diffusion equation [22–24] and some extensions of
these models [25–29].

There is no uniform mathematical definition of vortex at pre-
sent. In fluid mechanics, there are different definitions for vortex
[30–33], including rotation [30], Q-criterion [31], D-criterion
[32], k2-criterion [33], etc. To simplify the problem, we only use
the rotation to discuss vortex in heat conduction. In this paper,
the heat flux rotation is calculated and discussed for Fourier’s
law and several typical non-Fourier heat conduction models,
including the CV model, Jeffrey model, the GK model and the DPL
model. These discussion could be applied to prove non-Fourier
heat conduction. The heat flux rotation can also reflect particular
characteristics of non-Fourier heat conduction, which is quite dif-
ferent from mechanical phenomenon. As another common and
important flux in heat conduction processes, the entropy flux rota-
tion is also calculated for different models.

2. Heat flux rotation

For Fourier’s law, the heat flux rotation is

ðr � qÞF ¼ �r� ½kFðTÞrT� ¼ �r�r
Z T

0
kFðeÞde

� �
¼ 0; ð8Þ

which shows that for Fourier’s law, the heat flux field must be non-
rotating. For the CV model, taking rotation [34] of Eq. (4) leads to

r� qþ s @ðr � qÞ
@t

þr� ½kCV ðTÞrT� ¼ 0: ð9Þ

Then we can obtain [34]

ðr � qÞCV þ s @ðr � qÞCV
@t

¼ 0; ð10Þ

whose solution is

ðr � qÞCV ¼ ðr� qÞjt¼0e
�t
s: ð11Þ

Eq. (11) shows the exponential decay of the heat flux rotation, and
the decay rate is determined by the relaxation time. The rotation
[34] of Jeffrey model Eq. (5) is

ðr � qÞ þ s @ðr � qÞ
@t

þr� kðTÞrT þ s @

@t
½r � kFðTÞrT� ¼ 0:

ð12Þ

Because r� kðTÞrT ¼ r�r R T
0 kðeÞde

� �
and r� kFðTÞrT ¼

r�r R T
0 kFðeÞde

� �
, we can obtain r� kðTÞrT ¼ r� kFðTÞ

rT ¼ 0. Substituting it into Eq. (12) leads to
ðr � qÞJ þ s
@ðr � qÞJ

@t
¼ 0 ð13Þ

From Eq. (13),

ðr � qÞJ ¼ ðr� qÞjt¼0e
�t
s; ð14Þ

which is also an exponential decay function and has the same form
as Eq. (11). For the GK model, the rotation [34] is

@ðr � qÞ
@t

þ c2cl
3

r�rT þ 1
sR

ðr � qÞ ¼ 3sNc2

5
r�rðr � qÞ: ð15Þ

It is not difficult to find that r�rT ¼ 0 and r�rðr � qÞ ¼ 0.
Therefore, we have

1
sR

ðr � qÞGK þ @ðr � qÞGK
@t

¼ 0; ð16Þ

whose solution is

ðr � qÞGK ¼ ðr� qÞjt¼0e
� t
sR : ð17Þ

From Eq. (17), we can find that the heat flux rotation is also an
exponential decay function. In the GKmodel, there are two kinds of
relaxation time, namely sN for normal processes and sR for
momentum loss processes. Eq. (17) shows that the exponential
decay of the heat flux rotation is only related to sR, which is for dis-
sipative physical processes. Therefore, the heat flux rotation, which
is exponentially dissipative, only reflects the dissipative relaxation
in the GK model. For the DPL model,

ðr � qÞDPL þ sq
@ðr � qÞDPL

@t
¼ 0: ð18Þ

From Eq. (18),

ðr � qÞDPL ¼ ðr� qÞjt¼0e
� t
sq : ð19Þ

Similarly to other heat conduction models, for the DPL model, the
exponential decay of the heat flux rotation is also found in Eq.
(19). There are also two kinds of relaxation time in the DPL model,
namely sq for the heat flux relaxation and sT for the temperature
gradient relaxation. The exponential decay of the heat flux rotation
is only related to sq, which is for the heat flux relaxation processes.
This means that in the DPL model, the decaying heat flux rotation
only reflects the heat flux relaxation.

3. Non-Fourier heat conduction

Without heat source, the heat conduction equation of the CV
model is

@T
@t

þ s @
2T
@t2

¼ kCV
qcV

r2T; ð20Þ

which is a hyperbolic equation. The CV model is usually considered
to predict wave phenomena in heat conduction processes with

finite wave velocity
ffiffiffiffiffiffiffiffi
kCV
qcVs

q
, but Fourier’s law is often considered to

predict heat transport in an infinite velocity [35]. Therefore, it is
often believed that wave-like heat transport with finite wave veloc-
ity is caused by non-Fourier heat conduction models, and this char-
acteristic can be used to make a distinction between Fourier and
non-Fourier heat conduction. However, it has been found that Four-
ier’s law can also predict wave-like transport with finite speed in
certain heat conduction problems [36]. Especially for non-linear
heat source problems [36], it is found that Eq. (3) has travelling
wave solution in many cases, such as / ¼ /ðTÞ ¼ C1T

2 � C2T and
kF ¼ CF , where CF , C1 and C2 are all constants. Besides non-linear
heat source, the non-linear thermal conductivity can also predict
heat wave. For example, when the thermal conductivity kFðTÞ satis-
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fies kFðTÞ ¼ k0T
n (k0 and n are constants, and n–0), Eq. (3) has trav-

elling wave solution as follows

Tðx; tÞ ¼ n v xþ vk0t
qcV

� �
þ c

� �1
n

; ð21Þ

where v and c are constants. Eq. (21) shows that the thermal con-
ductivity satisfying kFðTÞ ¼ k0T

n can lead to diffusion wave with

wave velocity vk0
qcV

			 			. One of the most well-known mediums satisfying

this condition is ideal gas, whose thermal conductivity is propor-

tional to T
1
2. Therefore, in the above cases, heat wave with finite

transport velocity cannot prove that non-Fourier heat conduction
occurs. Even for constant physical properties problems, it is possible
that heat wave cannot prove non-Fourier heat conduction either.

As typical examples, we make a discussion on Fourier’s law and
the CV model. For one-dimensional heat conduction without heat
source / ¼ 0, when all physical properties are constants and
kCV > kF , consider a travelling wave solution

Tðx; tÞ ¼ C3 exp
t
s

kCV
kF

� 1
� �

� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcV
skF

kCV
kF

� 1
� �s" #

; ð22Þ

where C3 is a constant. Travelling wave solution Eq. (22) can satisfy
both Eq. (3), which is for Fourier’s law, and Eq. (20), which is for the
CV model. In this problem, the two models have a same wave veloc-

ity of the heat transport
ffiffiffiffiffiffiffiffiffiffiffi
kCV�kF
qcVs

q
. However, the CVmodel is often con-

sidered to predict wave velocity as
ffiffiffiffiffiffiffiffi
kCV
qcV s

q
, which is obviously larger

than the wave velocity
ffiffiffiffiffiffiffiffiffiffiffi
kCV�kF
qcV s

q
in this problem. Eq. (22) means that

even for constant physical properties problems, both Fourier’s law
and the CV model can predict exactly the same heat wave, and
exactly the same temperature field. Therefore, it could be infeasible
to prove that a heat conduction process is non-Fourier from the
viewpoint of finite transport velocity or heat wave phenomena. That
is because both heat wave phenomena and transport velocity are
determined by the solution of the governing equation, and the solu-
tion reflects the mutual influence of the governing equation and the
conditions determining the solution. The governing equation is
derived from the heat conduction law and the energy conservation
equation, which reflects the influence of the heat source. The condi-
tions determining the solution is composed of the initial and bound-
ary conditions. Therefore, not only the heat conduction law, but also
some other factors, including the heat source, the initial conditions
and the boundary conditions, can influence the wave characteristics
and transport velocity. Therefore, wave-like heat transport and finite
transport velocity cannot reflect the characteristics of non-Fourier
heat conduction directly, and they are not the essential distinction
between Fourier’s law and non-Fourier heat conduction models.

Different from wave characteristics and transport velocity, Sec-
tion 2 shows that the change rule of the heat flux rotation is only
determined by the heat conduction laws. For a heat conduction
model, the change rule of the heat flux rotation is established,
which is not influenced by the heat source, the initial conditions,
or the boundary conditions. Therefore, compared with wave char-
acteristics and transport velocity, the heat flux rotation (vortex)
reflects the characteristics of the heat conduction models better
by eliminating the influence from other factors. From Section 2,
it is found that the heat flux of Fourier heat conduction must be
non-rotating, and for typical non-Fourier heat conduction models,
including the CV model, Jeffrey model, the GK model and the DPL
model, the heat flux rotation must be exponentially dissipative.
Because the influence of other factors is eliminated, it is no doubt
that the difference for heat flux rotation is only caused by non-
Fourier effect. Therefore, the heat flux rotation can be considered
as a distinction between Fourier’s law and non-Fourier heat con-
duction models. This conclusion provides a perspective for proving
non-Fourier heat conduction, which could prove non-Fourier heat
conduction more rigorously than the methods based on heat wave
phenomena and finite transport velocity. For proving non-Fourier
heat conduction in experiments and simulation data, this perspec-
tive based on the heat flux rotation can be applied by observing the
heat flux circulation Pq, which is expressed as

Pq ¼
Z
@C

q � s!dl ¼
Z
C
ðr � qÞ � n!dS; ð23Þ

where C is an orientable surface, @C is the positive boundary, s
!
is

the unit tangent vector of @C, n
!
is the positive unit normal vector,

dl is the line element and dS is the surface element.
If non-zero heat flux circulation is found in experiments or sim-

ulation data, we can prove that non-Fourier heat conduction
occurs. What’s more, we can also check if the heat flux circulation
is exponentially dissipative to determine if some non-Fourier heat
conduction models, such as the CV model, is satisfied in experi-
ments or simulation data.

The above perspective can also make a distinction between
some non-Fourier heat conduction models. For example, for the
T-T model [16], which is for heat conduction in metals, the heat
flux satisfies the constitutive relation

q ¼ �kerTe; ð24Þ
where Te is the electron temperature and ke is the electron thermal
conductivity. It is not difficult to find that ðr � qÞT�T ¼ 0. Although
Eq. (24) is very similar to Fourier’s law, the heat conduction equa-
tion of the T-T model is very different

r2Te þ ae

C2
E

@

@t
ðr2TeÞ ¼ 1

aE

@Te

@t
þ 1
C2
E

@2Te

@t2
; ð25Þ

where aE is the equivalent thermal diffusivity, ae is the thermal dif-
fusivity of the electrons and CE is the heat wave velocity. Eq. (25) is
quite different from the heat conduction equation of Fourier’s law,
but has the same form as the heat conduction equation of the GK
model, which is expressed as

r2T þ 9sN
5

@

@t
ðr2TÞ ¼ 2

sRc2
@T
@t

þ 3
c2

@2T
@t2

: ð26Þ

Both Eq. (25) and Eq. (26) contain differential terms @
@t,

@2

@t2
, r2 and

@
@t ðr2Þ. When the coefficients of these differential terms are
proportional

5ae

9sNC2
E

¼ sRc2

2aE
¼ c2

3C2
E

; ð27Þ

The GK model and the T-T model will lead to exactly the same
temperature field for the same initial and boundary conditions.
Therefore, we cannot distinguish the two models from the charac-
teristics of temperature field when the coefficients are propor-
tional. However, their characteristics of the heat flux rotation are
completely different. The heat flux rotation of the GK model is
exponentially dissipative, but the T-T model must lead to non-
rotating heat flux. Therefore, the heat flux rotation can be consid-
ered as a perspective for distinguishing the two models.

4. Physical discussion

The heat flux rotation shows the rotating motion of heat flux

r� q ¼ 2-q; ð28Þ
where -q is the angular velocity of heat flux field. Therefore, the
conclusions in Section 3 can also be established between the angu-
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lar velocity of heat flux and heat conduction laws. Then, connec-
tions between physical phenomenon and physical mechanisms in
heat conduction processes can be built as follows. The angular
velocity or angular displacement of heat flux must be caused by
non-Fourier heat conduction mechanisms. The decay rate of the
angular velocity reflects certain relaxation processes determined
by heat conduction mechanisms. For Fourier heat conduction,
whose angular velocity of heat flux must be zero, the decay rate
of the angular velocity could be understood as þ1, because the
relaxation process doesn’t exist.

Heat conduction equation of the CV model, Eq. (20), has the
same form as the wave equations in mechanical phenomenon.
Because of this similarity of the governing equations, non-Fourier
heat conduction is considered to have similar characteristics
belonging to mechanical motion, such as ‘‘heat inertia” [37]. How-
ever, the rotating motion of heat flux is only determined by phys-
ical constitutive relation, which is quite different from the rotating
motion in mechanics. For example, in Newtonian fluid, the rotation
X of velocity field satisfies
@X
@t

þr�ðX�VÞ ¼r� F�r� rp
q

� �
þðX �rÞV �Xðr �VÞþmr2X;

ð29Þ
where V is the velocity field, X ¼ r� V , F is the body force, p is the
pressure and m is the kinematic viscosity. From Eq. (29), obviously,
the rotating motion in Newtonian fluid cannot be determined by
Newton’s law of viscosity, because the body force will also have
an effect, which can have nothing to do with the constitutive rela-
tion. What’s more, Eq. (29) also contains V and p, which reflect
the influence of the initial and boundary conditions. In mechanics,
inertia means that changing the motion states, including the rotat-
ing motion, needs the action of forces. In other words, the action of
forces can change the motion states, and makes the rotating motion
to be increasing, decaying or constant. However, for a non-Fourier
heat conduction model, the exponential decay of the rotating
motion is already established, which seems an ‘‘infinite inertia”
for rotating motion. Therefore, although the governing equations
of non-Fourier heat conduction are similar to the governing equa-
tions in mechanical phenomenon, the rotating motion of heat flux
shows particular characteristics of non-Fourier heat conduction.

5. Entropy flux rotation

Besides heat flux, entropy flux JS ¼ q
T is another common and

important flux in heat conduction processes, whose rotation is cal-
culated as

r� JS ¼ r� q
T

� �
¼ r� q

T
�rT � q

T2 : ð30Þ

For Fourier’s law, we haver� q ¼ 0 and therefore, the entropy flux
rotation is

r� JSF ¼ r� q
T

� �h i
F
¼ 0þ kFrT �rT

T2 ¼ 0; ð31Þ

which shows that entropy flux of Fourier’s law is also irrotational.
For the CVmodel, substituting Eqs. (4) and (11) into Eq. (30) leads to

r� JSCV ¼ ðr� qÞjt¼0e
�t
s

T
þ s @q

@t þ q

 �� q

kCVT
2

¼ ðr� qÞjt¼0e
�t
s

T
þ s @q

@t � q

kCVT
2 : ð32Þ

For Jeffrey model, substituting Eqs. (5) and (14) into Eq. (30) leads to

r� JSJ ¼
ðr � qÞjt¼0e

�t
s

T
þ ½s @q

@t þ kF
@ðrTÞ
@t � � q

kT2 : ð33Þ
For the GK model, the entropy flux rotation is

r� JSGK ¼ ðr� qÞjt¼0e
� t
sR

T
þ
3 @q

@t � 3sNc2
5 rðr � qÞ

h i
� q

c2clT
2 : ð34Þ

For the DPL model, the entropy flux rotation is

r� JSDPL ¼
ðr� qÞjt¼0e

� t
sq

T
þ

sq @q
@t þ kDPLsT @ðrTÞ

@t

h i
� q

kDPLT
2 : ð35Þ

It is not difficult to find that different from the heat flux rota-
tion, the entropy flux rotation of a non-Fourier heat conduction
model does not change in an established rule determined by the
model. The heat flux field and temperature field also have influ-
ence on the entropy flux rotation, which shows that the entropy
flux rotation is also related to the heat source, the initial condi-
tions, and the boundary conditions.

6. Conclusions

1. The heat flux rotation of Fourier’s law must be non-rotating,
and for several typical non-Fourier heat conduction models,
including the CV model, Jeffrey model, GK model and DPL
model, the rotation is exponentially dissipative. The decay rate
of the heat flux rotation can reflect certain relaxation processes
in non-Fourier heat conduction.

2. Essentially speaking, heat wave phenomena and finite transport
velocity reflect the mutual influence of the governing equation
and the conditions determining the solution, rather than heat
conduction law, which is only one of the factors for deriving
the governing equation. As comparison, the change rule of the
heat flux rotation is only determined by the heat conduction
law. Therefore, the heat flux rotation could provide a perspec-
tive for proving non-Fourier heat conduction, which is more rig-
orous than heat wave phenomena or finite transport velocity. In
experiments and simulation data, this perspective can be
applied by observing the heat flux circulation.

3. The heat flux rotation shows the rotating motion of heat flow,
which reflects certain relaxation processes in heat conduction.
The characteristics of the heat flux rotating motion, which is
exponentially dissipative, are quite different from the charac-
teristics of the rotating motion in fluid mechanics. This shows
that although the governing equations of non-Fourier heat con-
duction are similar to the governing equations in mechanical
phenomenon, non-Fourier heat conduction laws have particular
characteristics for the rotating motion.

4. The entropy flux of Fourier’s law is still irrotational. Different
from the heat flux rotation, the entropy flux rotation of a non-
Fourier heat conduction model does not change in an estab-
lished rule determined by the model.
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