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Research on the heat conduction in nanostructures has drawn much attention due to their 
potential applications in thermoelectric devices. Although the phonon tracing Monte Carlo 
(MC) technique, where the trajectories of individual phonons are simulated independently, 
has been extensively used for simulating the heat conduction in nanomaterials, it cannot 
efficiently simulate the phonon transport in the large area periodic nanostructures yet, 
due to the demand of absorbing boundaries. In the present work, we develop a two-step 
phonon tracing MC method to solve this problem. At the first step, the initial phonon 
transmittance and the phonon emission distributions at the internal virtual boundary are 
obtained by simulating phonon transport in the initial simulation unit that is directly in 
contact with the phonon bath. At the second step, the internal phonon transmittance is 
calculated for the internal simulation units according to the internal boundary phonon 
emission distributions. Since the whole structure can be simplified as a one-dimensional 
phonon transport system, the total phonon transmittance can be readily calculated via 
the combination of initial and internal phonon transmittances, and the effective thermal 
conductivity is then derived. Furthermore, for verification, we calculate the effective 
thermal conductivities of three typical nanostructures, that is, the cross-plane and in-plane 
nanofilms and the periodic nanoporous structures, by using the theoretical models, the 
standard and the two-step MC simulations, respectively. The two-step MC method well 
predicts the results calculated by the standard MC simulations and the theoretical models. 
More importantly, the computation time of the two-step MC simulation is at least one 
order of magnitude less than that of the standard MC simulation, while its under-prediction 
can be less than 10% even 5%.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Periodic semiconductor nanostructures, such as phononic crystals, have shown great potentials for developing the highly-
efficient thermoelectric devices [1–3]. Researchers demonstrated that by etching periodic nanoscale holes in silicon thin 
films (i.e. phononic crystals) the effective thermal conductivity is significantly reduced due to the phonon-boundary scatter-
ing, while only a minor effect occurs on their electrical properties, and thus the dimensionless figure of merit (ZT) can be 
improved. Therefore, the study on the heat conduction in the periodic semiconductor nanostructures has been necessarily 
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Fig. 1. (a) Schematic for a typical large area periodic nanostructure: phononic crystals. (b) A temperature difference is applied in the nanostructure to induce 
a heat flow, and then the effective thermal conductivity can be calculated by using Fourier’s law.

essential for the further development of the new-generation thermoelectric materials [4–6]. Phonons predominate the ther-
mal transport in semiconductors [7]. In nanostructures whose characteristic lengths are comparable to the phonon mean 
free path (MFP), ballistic transport and boundary scattering will make the effective thermal conductivity dependent on the 
geometry and size, indicating a violation of the classical Fourier’s law [8].

Generally, the phonon Boltzmann transport equation (BTE) is employed to characterize the thermal transport in nanos-
tructures [9,10]. Monte Carlo (MC) simulation has been proven to be a favorable method to solve the phonon BTE [11–31]. 
Two typical kinds of MC methods are often used to simulate phonon transport in nanostructures: the ensemble MC and 
the phonon tracing MC. In the ensemble MC simulations, the trajectories of all phonons are simulated simultaneously at 
each time step [12–18]. Peterson [12] first simulated phonon heat conduction by using this method on the basis of De-
bye approximation. Afterwards, the ensemble MC method was also employed to study the effective thermal conductivity 
of nanostructures including nanoporous silicon [14–16], and composites [17,18], etc. In contrast, the phonon tracing MC 
method simulates the trajectories of individual phonons independently, resulting in a significant reduction of computational 
expense [11,19–31]. Early in 1989, Klitsner et al. [11] used the phonon tracing MC simulation to study the ballistic heat 
conduction in the silicon crystals at an extremely-low temperature, neglecting the influence of internal phonon scattering. 
Then, this method was extended to simulate the phonon transport at room temperature, where the internal phonon scatter-
ing becomes significant. Péraud et al. [19] simulated the heat conduction for the transient thermo-reflectance experiment, 
demonstrating the validity of the phonon tracing method. According to the work of Schleeh et al. [20], this method can also 
be an efficient technique to investigate the thermal transport in electronics. Besides, Hua et al. [21–25], Ravichandran et 
al. [26] and Lee et al. [27] employed this method to study the thermal properties of the various nanostructures, including 
nanofilms, nanowires and nanoporous materials, and the MC simulations could well predict the results obtained by the 
theoretical models and the experiments. The phonon tracing MC method was also employed to investigate the ultrafast 
thermal transport process in nanostructures, where the ballistic-diffusive mechanism could be coupled with the heat wave 
effect [28–31]. To be summarized, the phonon tracing method can well handle the problems with complicated geometries 
and multiple scattering events, and the ultrafast transport processes. When compared to the molecular dynamics (MD) sim-
ulation which has been another important simulation technique [32], the phonon tracing MC method holds a considerably 
less computational expense, and thus it could be employed to study the problems with larger size. Actually, the MD simu-
lation could contain more physical details; for example, in the conventional MC simulations, the boundaries are frequently 
regarded as rigid, while the MD simulations could better characterize the complexity resulted from the structural relaxation 
on the edge region [33].

Fig. 1(a) illustrates a typical large area periodic nanostructure. As shown in Fig. 1(b), in MC simulations a temperature 
difference is usually imposed in the structure to induce a heat flux, and then the effective thermal conductivity can be ob-
tained by using Fourier’s law, keff = qL/�T , where q is the heat flux, L is the distance between these two phonon baths, and 
�T is the temperature difference. Isothermal boundary conditions [13] are frequently applied to establish the temperature 
difference in the MC simulations, which requires a computational domain consisting of many periods to eliminate the end 
effects [14–16]. In this case, the exact effective thermal conductivity can be obtained only if the simulation results will no 
longer vary with further increasing the number of periods, resulting in a considerable large computational expense. Jean 
et al. [15] investigated the effective thermal conductivity of nanoporous silicon and germanium by using the ensemble MC 
simulations where the traditional isothermal boundary conditions were used. Wolf et al. [16] also discussed the effects of 
porosity and roughness on the effective thermal conductivity of silicon nanomesh via the ensemble MC method with isother-
mal boundary conditions. In order to reduce the computational expense, researchers [14,17] have devoted to developing the 
periodic boundary conditions to obtain the exact effective thermal conductivity of the large area periodic nanostructures 
by simulating the phonon transport only in one or several repeating units. A periodic boundary condition specially for 
the ensemble MC simulation was proposed by Jeng et al. [17] in the simulations of the heat conduction in nanoparticle 
composites. Then, Hao et al. [14] and Péraud et al. [18] studied the thermal transport in periodic nanostructures following 
the method proposed by Jeng et al. [17]. As for the phonon tracing MC simulation, the periodic boundary condition could 
become inapplicable due to the demand of absorbing boundaries [19]. Thus, when using the phonon tracing MC simulation 
to calculate the thermal conductivity of the phononic crystal nanostructures, Nomura et al. [34] had to choose the distance 
between phonon baths to be sufficiently large to obtain an exact value. In order to overcome the absence of absorbing 
boundary when the periodic boundary condition is used in the phonon tracing MC simulations, Péraud et al. [19] suggested 
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that the phonon tracing could be terminated after several scattering events, but it is still difficult to determine the number 
of scattering events a phonon must undergo before its tracing can be terminated. In practice, due to the significant com-
putational merit of the phonon tracing MC simulation, it has been extensively used to investigate the phonon transport in 
nanostructures, but yet even now cannot efficiently handle the problems in the large area periodic nanostructures because 
of the inapplicability of periodic boundary condition. Therefore, it could be needed to further develop the phonon tracing 
MC method for the efficient simulation of the heat conduction in the large area periodic nanostructures.

In the present work, a two-step phonon tracing MC method that overcomes the deficiency of the periodic boundary con-
dition is developed to simulate the heat conduction in nanostructures. It contains two basic simulation steps, and can greatly 
reduce the computation time without destroying the accuracy. Additionally, the numerical experiments for the cross-plane 
and in-plane nanofilms, and the periodic nanoporous structures, are conducted to verify the two-step MC method.

2. Phonon tracing MC simulation

The phonon tracing MC simulation is based on the phonon BTE [9,10],

�v g · ∇ f = f0 − f

τ
, (1)

where �v g(ω) is the group velocity, f = f (�r, ω, ϕ, θ, T ) is the phonon distribution function, f0 is the equilibrium distribution 
function, f0 = f B E/4π , and τ (ω, p, T ) is the relaxation time (ω, ϕ , θ , T , h̄, kB , p, and f B E referring to the angular frequency, 
the azimuthal angle, the polar angle, the temperature, the Dirac constant, the Boltzmann constant, the polarization, and 
Bose–Einstein distribution, respectively). In MC simulations, phonons are treated as particles, and their motion is simulated 
by random number sampling, equivalent to directly solving Eq. (1).

In practice, what we simulate is the prescribed phonon bundles but not actual phonons. The intensity of each phonon 
bundle is defined as, W = E/N , where E is the emission phonon energy per area per unit time from the boundary, and N
is the number of phonon bundles that we trace in MC simulations. The emitting phonon energy, E , is dependent on the 
boundary temperature [35,36],

E =
∑

p

ωmax,p∫
0

v g(ω)Cωdω
T B

4
, (2)

in which Cω = h̄ω∂ f B E/∂T DOS(ω), DOS(ω) is the phonon density of states, and T B refers to the boundary temperature. 
N must be large enough to preserve the simulation accuracy, and energy conservation is guaranteed by conserving the total 
number of phonon bundles.

The position vector of phonon bundle is defined as �r = [x, y, z], and the directional vector is �s = [cos(θ), sin(θ) cos(ϕ),

sin(θ) sin(ϕ)], where θ is the polar angle and ϕ is the azimuthal angle. Besides, phonon properties, including dispersion 
relations and relaxation time, which can be obtained from the first principle method [37] and some empirical models [38], 
should be input for initialization. It is noted that the gray approximation which assumes phonon properties are frequency-
independent, is often adopted. In this case, phonons travel with one average group velocity and the scattering rate is 
characterized by an average phonon MFP [12,35].

Here, the two most common boundary conditions, i.e., isothermal and adiabatic boundaries, are discussed. An isothermal 
boundary holds two functions: First, it emits phonons into the computational domain; Second, it also serves as an absorb-
ing boundary to ensure energy conservation. When a phonon bundle emits from an isothermal boundary, its intensity is 
given in terms of the boundary temperature, and the boundary phonon emission distributions, including angular and spatial 
distributions, should be obtained according to the properties of boundary. In principle, an isothermal boundary is usually 
set as phonon black-body [13] in analogy to the black-body wall in photon transport, that is, phonons arriving at it will 
be completely absorbed. In contrast, for adiabatic boundary, all phonons that strike it will be reflected back into the com-
putational domain. A specular parameter, P , is introduced to describe the possibility of phonon specular scattering at such 
boundaries. It can be expressed as P = exp(−16π2�2/λ2) [7], in which � is the root-mean-square value of the roughness 
fluctuations and λ is phonon wavelength. When P is equal to 1, the phonon scattering is completely specular, and we then 
have

�sr = �si + 2|�si · �n|�n, (3)

in which �si is the incident direction vector, �sr is the reflect direction vector, and �n is the unit surface normal vector. While 
P = 0 corresponds to the diffusive scattering, and the reflecting direction vector should be regenerated.

Fig. 2 illustrates the phonon tracing algorithm of the phonon tracing MC method. Basically, we divide this process to six 
procedures:

(1) Initialization: Input phonon properties, and set the total number of phonon bundles.
(2) Phonon bundle emission: Draw the initial properties of a phonon bundle according to the nature of the emitting 

boundary. These properties, including position �r0 = [x0, y0, z0], traveling direction �s, polarization p, angular frequency ω, 
etc., are determined by random number sampling.
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Fig. 2. Phonon tracing algorithm schematic for phonon tracing Monte Carlo simulation.

(3) Phonon bundle moving: Calculate the traveling length �r until the first scattering event and renew the position of 
phonons, �rnew = �r0 + �r�s.

(4) Boundary scattering: When a phonon bundle collides with a boundary at �rB , set �rnew = �rB . If the boundary is non-
absorbing, the phonon bundle should be reflected back into the domain. Then, a random number is drawn. If this 
random number is less than the specular parameter P , the boundary scattering is specular; otherwise, the boundary 
scattering is diffusive.

(5) Phonon bundle reemission: If a phonon bundle does not collide with boundaries, the phonon should reemit at rnew . 
Then, we set �r0 = �rnew and proceed to (3).

(6) Phonon bundle tracing termination: If the phonon bundle arrives at the absorbing boundary, the tracing process of 
this phonon bundle is finished. We then proceed to (2) and begin the tracing of the next phonon bundle.

In the case of small temperature difference, the phonon properties (e.g. relaxation time and heat capacity) can be regarded 
as temperature-independent during the simulation process. Hence, for a one-dimensional heat conduction system as shown 
in Fig. 1(b), we can set the total emission energy as E = �T

∑
p

∫ ωmax,p

0 v g(ω)Cω/4dω. In this way, only the hot isothermal 
boundary needs to emit hot phonon bundles, and the cold isothermal boundary merely serves as an absorbing boundary. 
The net heat flow is then calculated by counting the number of phonon bundles arriving at the cold isothermal boundary.

As we stated above, the trajectories of phonon bundles are simulated independently, resulting in the significant com-
putational merit when compared to the ensemble MC simulation. However, since the absorbing boundary is necessary for 
phonon tracing termination, periodic boundary condition that will lead to the absence of absorbing boundary, becomes in-
applicable in the standard phonon tracing MC simulation. Therefore, when we use the standard phonon tracing MC method 
to calculate the effective thermal conductivity of a large area periodic nanostructure, the isothermal boundary conditions 
should be employed to establish the temperature difference. As shown in Fig. 1(b), the hot phonon bundles enter the com-
putational domain from the hot isothermal boundary, and the specular boundary condition can be used as the alternative of 
the lateral periodic boundary condition [39]. We denote the number of the phonon bundles that arrive at the cold boundary 
by Nc , and then the net heat flux is calculated as
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Fig. 3. Schematic for one-dimensional phonon transport system: p0 is the initial phonon transmittance, and pi is the internal phonon transmittance.

q = W Nc = pt E, (4)

where pt = Nc/N is the total phonon transmittance. Then, the effective thermal conductivity is given by

keff = qL

�T
= pt

E L

�T
. (5)

When L → ∞, the end effect is completely eliminated, and thus we obtain the exact effective thermal conductivity of the 
large area periodic structure in theory. Obviously, L → ∞ cannot be realized in practice, and thus a reliable way to obtain 
the exact effective thermal conductivity is to gradually increase the number of periods until the result is converged, which 
can cause large computational expense.

3. Algorithm of two-step MC method

A large area periodic nanostructure is comprised of a series of units whose length is denoted by �L, and thus can be 
regarded as a one-dimensional phonon transport system shown in Fig. 3. As long as we know the phonon transmittance of 
each simulation unit, the total phonon transmittance can be obtained. The initial simulation unit is directly in contact with 
the phonon emission boundary (i.e. hot isothermal boundary), and its phonon transmittance is denoted by p0. Due to the 
periodicity of structure, it could be reasonable to assume that the internal units that are not directly in contact with the 
phonon emission boundary hold the same phonon transmittance pi . The total phonon transmittance can be derived from 
p0 and pi . We assume the periodic nanostructure contains Np units, and a recurrence relation is then derived,

Np = 1, p1 = p0;

Np = 2, p2 = p1 pi

∞∑
j=1

[
(1 − p1,inv)(1 − pi)

] j−1 = p1 pi

1 − (1 − p1,inv)(1 − pi)
;

...

Np = Np, pN p = pN p−1 pi

∞∑
j=1

[
(1 − pN p−1,inv)(1 − pi)

] j−1 = pN p−1 pi

1 − (1 − pN p−1,inv)(1 − pi)
;

(6)

in which p1,inv · · · pN p−1,inv are the inverse transmittances describing the possibility that phonons return to the emitting 
boundary from the internal virtual boundaries. The recurrence relation of the inverse transmittance can be given by

Np = 1, p1,inv = pi;

Np = 2, p2,inv = p1,inv pi

∞∑
j=1

[
(1 − p1,inv)(1 − pi)

] j−1 = p1,inv pi

1 − (1 − p1,inv)(1 − pi)
;

...

Np = Np, pN p ,inv = pN p−1,inv pi

∞∑
j=1

[
(1 − pN p−1,inv)(1 − pi)

] j−1 = pN p−1,inv pi

1 − (1 − pN p−1,inv)(1 − pi)
.

(7)

Thus, according to the recurrence relation, Eq. (7), the inverse transmittance of a nanostructure with Np periods is

pN p ,inv = pi

1 + (N − 1)(1 − p )
. (8)
p i
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Fig. 4. Algorithm schematic for two-step Monte Carlo method.

Furthermore, combining Eqs. (6) and (8), we have the total phonon transmittance when a nanostructure contains N p peri-
ods,

pN p = p0

1 + (Np − 1)(1 − pi)
. (9)

In terms of Eq. (5), the effective thermal conductivity is then obtained,

keff,N p = pN p

E L

�T
= E�L

�T

p0Np

1 + (Np − 1)(1 − pi)
. (10)

As Np → ∞ (i.e. L → ∞), we have the limit effective thermal conductivity,

keff_limit = E�L

�T

p0

1 − pi
. (11)

Since the end effect is completely eliminated for the limit effective thermal conductivity, it can be regarded as an estimation 
of the exact effective thermal conductivity of the large area periodic nanostructure.

When the structure of the simulation unit is given, once we know how the phonon bundles enter the simulation unit, 
i.e. the boundary phonon emission distributions, its phonon transmittance can be calculated by using the phonon tracing 
MC method. The initial unit is in contact with the hot isothermal boundary where the phonon emission distributions are 
already known [13], so its transmittance, p0, can be readily obtained by the standard phonon tracing MC simulation. In 
contrast, how the phonon bundles enter the internal unit (i.e. the phonon emission distributions at the internal virtual 
boundary) should be obtained by simulating the phonon transport in the initial unit. As shown in Fig. 3, the right absorbing 
boundary in the initial unit just serves as the phonon emission boundary for the internal unit, which means how the 
phonon bundles leave the initial unit determines how the phonon bundles enters the internal unit. Therefore, the phonon 
emission distributions at the internal virtual boundary can be obtained by gathering the statistics of phonon angular, spatial 
and frequency distributions at the right absorbing boundary of the initial unit. Fig. 4 shows the algorithm of the two-step 
MC method, which is concluded as two basic simulation steps: (1) We simulate the phonon transport in the initial unit, and 
then obtain the initial phonon transmittance p0 and the phonon emission distributions at the internal virtual boundary; 
(2) According to the phonon emission distributions at the internal virtual boundary, the phonon transport in the internal 
unit is simulated to obtain the internal phonon transmittance pi . Once p0 and pi are both obtained, we can calculate the 
effective thermal conductivity of the whole structure by using Eqs. (10) and (11).
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Fig. 5. (a) Schematic for cross-plane heat conduction in nanofilm; (b) Schematic for in-plane heat conduction in nanofilm; (c.1) Schematic for heat conduc-
tion in nanoporous structure; (c.2) Unit of nanoporous thin film: the outer surface can be approximated as a circle with the same area.

If the size of minimum repeating unit is much small, in order to reduce the estimation deviation of the two-step MC 
method, in practice one simulation unit can contain several minimum repeating units. Even in this way, the length of sim-
ulation unit, �L, can also be small (one MFP or even smaller), and thus the two-step MC method can gain a significant 
computational merit when compared to the standard phonon tracing MC simulation. Importantly, it does not require a 
complicated programming, because the structure of the initial and the internal simulation units is definitely the same, and 
what we need to do is just to renew the phonon emission distributions at the emitting boundaries. In addition, when the 
simulation unit length is larger than one MFP, the difference between p0 and pi resulted from the phonon boundary emis-
sion distributions is found to be negligible. Therefore, the two-step MC method can even be simplified as a one-step MC 
method, which can further reduce the computational expense, by taking p0 as the alternative of pi . Here, three main advan-
tages of the two-step MC method can be concluded as below: (i) it can greatly reduce the computational expense without 
destroying the accuracy; (ii) it does not require a complicated programming; (iii) it can even be simplified a one-step MC 
method when the simulation unit length is considerably large.

4. Numerical experiments

We calculate the effective thermal conductivities of three typical silicon nanomaterials, i.e. cross-plane and in-plane 
nanofilms, and periodic nanoporous structures, as shown in Fig. 5, by using the theoretical models, the standard and the 
two-step phonon tracing MC simulations, respectively. These three nanostructures are relatively simple and thus hold reli-
able analytical effective thermal conductivity models derived from the phonon BTE, so they are good examples to verify the 
two-step MC method. For clarity, Debye approximation is adopted to deal with the phonon properties of silicon at the room 
temperature, and thus phonons travel with one average group velocity and the scattering rate is characterized by an average 
phonon MFP. Here, we choose the average MFP (l0) as 260 nm with its corresponding heat capacity (0.93 × 106 J/m3 K) and 
average group velocity (1800 m/s) [35]. Due to the Debye approximation, Eq. (10) can be simplified as

keff,N p

kbulk
= 3�L

4l0

p0Np

1 + (Np − 1)(1 − pi)
. (12)

Then, Eq. (11) becomes

keff_limit

kbulk
= 3�L

4l0

p0

1 − pi
. (13)

For silicon at room temperature, the dominant phonon wave length is approximately less than 1 nm [40], and thus any 
realistic surface roughness will lead to completely diffusive scattering at the boundaries. In our simulations, when phonons 
emit from the isothermal boundary, the angular emission distribution obeys Lambert’s cosine law, and the spatial emission 
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Table 1
Phonon transmittances calculated by MC simulations.

�L = 0.5 MFPs �L = 1 MFP �L = 5 MFPs

p0 pi p0 pi p0 pi

Cross-plane 0.704 0.715 0.553 0.568 0.207 0.214
In-plane, Kny = 1 0.618 0.643 0.459 0.482 0.151 0.162
In-plane, Kny = 5 0.416 0.462 0.276 0.306 0.0772 0.0861
Nanoporous, KnR = 1, ε = 0.2 0.682 0.698 0.528 0.546 0.190 0.198
Nanoporous, KnR = 5, ε = 0.1 0.654 0.671 0.497 0.515 0.177 0.186

Fig. 6. (a) Cross-plane effective thermal conductivity varying with Lx; (b) Limit effective thermal conductivity of cross-plane nanofilm.

distribution is uniform at the boundaries. The internal scattering is set as isotropic. The number of phonon bundles that 
we trace in the simulations is set as 2 × 106. Besides, more information about the random number sampling can refer to 
Refs. [13,21].

4.1. Cross-plane heat conduction in nanofilm

Fig. 5(a) shows the cross-plane heat conduction in nanofilms. In this case, the film thickness is equal to the distance 
between phonon baths (Lx), and the effective thermal conductivity increases with the increasing film thickness, due to the 
influence of ballistic transport. On the basis of the differential approximate solution of the phonon BTE, the effective thermal 
conductivity of cross-plane nanofilms is given by [41]

keff,cr

kbulk
= 1

1 + 4
3

l0
Lx

, (14)

where kbulk is the bulk thermal conductivity and l0 is the average phonon MFP.
In the two-step MC simulations, the lengths of simulation unit (�L) are set as 0.5, 1 and 5 MFPs, respectively. As illus-

trated in Table 1, we calculate the initial and the internal phonon transmittances (p0 and pi ) for the cross-plane nanofilms. 
The phonon transmittances reduce with the increasing Lx , and pi is always larger than p0. Then, the cross-plane effective 
thermal conductivities are obtained by using Eq. (12). Fig. 6(a) illustrates the cross-plane effective thermal conductivity of 
nanofilms varying with Lx . It found that the cross-plane effective thermal conductivity increases with increasing Lx , and 
the results obtained by the standard MC simulation agree well with these predicted by the theoretical model, Eq. (14). The 
results predicted by the two-step MC method are slightly less than these obtained by the standard MC method, and the 
deviation between them decreases with increasing length of simulation unit �L. As we stated above, the difference between 
p0 and pi could be small in some cases, and thus we can only use p0 to estimate the effective thermal conductivity. The 
effective thermal conductivities obtained by the two-step MC method with using p0 are less than these with using both p0
and pi , while their difference decreases with increasing �L. In the case with �L = 5 MFPs, their differences can even be 
neglected. We may conclude that as �L ≥ 5 MFPs, the two-step MC method can be simplified as a one-step MC method by 
taking p0 as the alternative of pi , which will further reduce the computational cost.

In theory, as the distance between two phonon baths approaches to infinite, i.e. Lx → ∞, the cross-plane effective 
thermal conductivity will recover to the bulk value, that is, keff,cr/kbulk = 1. For the two-step MC method, using Eq. (13), we 
can estimate the limit effective thermal conductivity with Lx → ∞ (i.e. Np → ∞). As shown in Fig. 6(b), the limit effective 
thermal conductivities predicted by the two-step MC method are slightly less than the bulk value, and their deviation 
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Table 2
Limit effective thermal conductivity of cross-plane nanofilm with Lx → ∞.

keff_limit/kbulk (kbulk − keff_limit)/kbulk (%) Computation time (s)

Theoretical model, Eq. (14) 1.00 0 N/A
Standard MC, Lx = 100 MFPs 0.985 1.5% 29.4 (100%)
Two-step MC �L = 0.5 MFPs 0.926 7.4% 0.841 (2.8%)

�L = 1 MFP 0.958 4.2% 1.08 (3.6%)
�L = 5 MFPs 0.988 1.2% 3.84 (13.1%)

Table 3
Limit effective thermal conductivity of in-plane nanofilms with Lx → ∞.

keff_limit/kbulk (kbulk − keff_limit)/kbulk (%) Computation time (s)

Kny = 1 Theoretical model, Eq. (15) 0.684 0 N/A
Standard MC, Lx = 100 MFPs 0.681 0.5% 80.5 (100%)
Two-step MC �L = 0.5 MFPs 0.651 4.8% 1.53 (1.9%)

�L = 1 MFP 0.664 2.9% 2.56 (3.2%)
�L = 5 MFPs 0.678 0.8% 8.83 (10.9%)

Kny = 5 Theoretical model, Eq. (15) 0.323 0 N/A
Standard MC, Lx = 100 MFPs 0.315 2.5% 189 (100%)
Two-step MC �L = 0.5 MFPs 0.290 10.1% 2.79 (1.5%)

�L = 1 MFP 0.299 7.4% 4.74 (2.5%)
�L = 5 MFPs 0.316 2.2% 20.1 (10.6%)

decreases with increasing �L. Besides, we can also only use p0 to predict the limit effective thermal conductivity. The 
results by the two-step MC method with using p0 are less than these with using p0 and pi , and the difference also 
decreases with increasing �L. Although it cannot be realized in the standard MC simulation to let Lx approach to infinite, 
we can set Lx equal to 100 MFPs to approach to the limit effective thermal conductivity. As shown in Table 2, the deviation 
between the theoretical value and the result predicted by the standard MC simulation with Lx = 100 MFPs is about 1.5%. In 
contrast, for the two-step MC simulation, once �L ≥ 1 MFP, the deviation becomes less than 5%. More importantly, Table 2
demonstrates that the two-step MC method can greatly reduce the computation time without causing significant deviation. 
For example, as �L = 5 MFPs, the deviation of the two-step MC simulation is only about 1.2%, while its computation time 
is one order of magnitude less than that of the standard MC simulation with Lx = 100 MFPs.

4.2. In-plane heat conduction in nanofilm

Fig. 5(b) shows the in-plane heat conduction in nanofilms. The in-plane effective thermal conductivity of nanofilms 
decreases due to the phonon-boundary scattering and merely depends on the lateral thickness L y in theory [18],

keff_in

kbulk
= 1 − 3

2

l0
L y

1∫
0

[
1 − exp

(
− l0√

1 − μ2L y

)]
μ3dμ. (15)

However, in practice, the distance between phonon baths, Lx , can also influence the in-plane effective thermal conductivity, 
unless Lx � l0. Therefore, in the standard MC simulations, if we only want to investigate the L y-dependence of effective 
thermal conductivity, the distance between phonon baths must be large enough to eliminate the end effect.

We define a Knudsen number as Kny = l0/L y . In our MC simulations, Kny is set as 1 and 5, respectively. Table 1
shows p0 and pi for the in-plane nanofilms with different lengths of simulation unit (Lx = 0.5, 1 and 5 MFPs). Due to the 
y-directional boundary scattering, the transmittances of in-plane films are less than these of cross-plane films, and decrease 
with Kny increasing. Figs. 7(a) and (b) illustrate the in-plane effective thermal conductivity of nanofilms varying with Lx . 
When Kny is given, the in-plane effective thermal conductivity increases with increasing Lx , and approaches to the value 
predicted by Eq. (15). The results predicted by the two-step MC method are slightly less than these obtained by the standard 
MC method, and the deviation between them decreases with increasing �L. Besides, the effective thermal conductivities 
obtained by the two-step MC method with using p0 are less than these with using both p0 and pi , while the difference 
also decreases with increasing �L. Similar to the case of cross-plane nanofilms, when �L ≥ 5 MFPs, their difference can be 
neglected. Fig. 7(c) illustrates the limit effective thermal conductivity of in-plane nanofilms with Lx → ∞. By using Eq. (13), 
we can obtain the limit effective thermal conductivities, which are slightly less than these predicted by Eq. (15). In spite of 
the different values of Kny , the deviation between the two-step MC simulation and the theoretical model decreases with 
increasing �L, and becomes less than 5% as �L ≥ 1 MFP (shown in Table 3). Similar to the case of cross-plane nanofilms, 
the results by the two-step MC method with using p0 are also less than these with using both p0 and pi , and the difference 
decreases with increasing �L. Besides, according to Table 3, for the in-plane nanofilms, the two-step MC method can also 
greatly reduce the computational time without destroying the accuracy.
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Fig. 7. (a) In-plane effective thermal conductivity with Kny = 1; (b) In-plane effective thermal conductivity with Kny = 5; (c) Limit effective thermal 
conductivity of in-plane nanofilm.

4.3. Heat conduction in periodic nanoporous structure

Figs. 5(c.1) and (c.2) show the heat conduction in a periodic nanoporous structure, which is crossed by nanoscale cylindri-
cal channels. The pore radius is R p , and the distance between two neighboring pore axials is Lp . The temperature difference 
is applied along the pore axial direction (x-direction), and thus the thermal transport is periodic in the y- and z-directions. 
Therefore, the phonon transport inside the nanoporous structures can be represented by that in the simulation unit shown 
in Fig. 5(c.3) with the totally specular scattering boundary conditions in the y- and z-boundaries [29]. It should be note that 
the specular scattering boundary conditions in the y- and z-boundaries do not change the transport direction of phonon 
energy, resulting in the same influence on effective thermal conductivity as that caused by the periodic boundary conditions. 
In our studying cases, pores are squarely arrayed, and thus the maximum porosity in theory is equal to π/4 ≈ 0.79. For 
simplicity, the outer surface of the square unit is converted into a circle, that is, to approximate a square unit cross section 
as a circular cross section with the same cross-sectional area, as shown in Fig. 5(c.3), Ro = Lp/

√
π . And the porosity is then 

calculated as ε = R2
p/R2

o . According to above approximations, an analytical model for the effective thermal conductivity of 
host material along the pore axial direction can be derived from phonon BTE [24,40],

keff,po

kbulk
= 1 − 3

π R2
p(ε−1 − 1)

R p/
√

ε∫
R p

rdr

2π∫
0

1∫
0

exp

(
− Lrp

l0
√

1 − μ2

)
μ2dμdϕ, (16)

with

Lrp =

⎧⎪⎨
⎪⎩

r
[
|cosϕ| −

((
R p
r

)2 − sin2 ϕ
)1/2]

π − ϕc1 ≤ ϕ ≤ π + ϕc1

R p√
ε

sin(ϕ−ϕ2)
sin(ϕ)

+ R p√
ε
[|cosϕ2| − (ε − sin2 ϕ2)

1/2] 0 ≤ ϕ ≤ ϕc1 or 2π − ϕc1 < ϕ ≤ 2π

in which ϕc1 = arcsin(R p/r) and ϕ2 = arcsin[(r√ε/R p) sin(ϕ)].
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Fig. 8. (a) Effective thermal conductivity of nanoporous structure along the pore axial direction with KnR = 1.0 and ε = 0.2; (b) Effective thermal con-
ductivity of nanoporous structure along the pore axial direction with KnR = 5.0 and ε = 0.1, (c) Limit effective thermal conductivity along the pore axial 
direction.

Table 4
Limit effective thermal conductivity of nanoporous structures with Lx → ∞.

keff_limit/kbulk (kbulk − keff_limit)/kbulk (%) Computation time (s)

KnR = 1, ε = 0.2 Theoretical model, Eq. (15) 0.908 0 N/A
Standard MC, Lx = 100 MFPs 0.891 1.9% 103 (100%)
Two-step MC �L = 0.5 MFPs 0.846 6.8% 2.15 (2.1%)

�L = 1 MFP 0.871 4.1% 3.37 (3.3%)
�L = 5 MFPs 0.888 2.2% 10.9 (10.6%)

KnR = 5, ε = 0.1 Theoretical model, Eq. (15) 0.844 0 N/A
Standard MC, Lx = 100 MFPs 0.831 1.5% 126 (100%)
Two-step MC �L = 0.5 MFPs 0.746 11.6% 2.63 (2.1%)

�L = 1 MFP 0.768 9.0% 3.88 (3.1%)
�L = 5 MFPs 0.816 3.3% 14.4 (11.4%)

The Knudsen number, KnR , is defined as KnR = l0/R , and it is set as 1 and 5 respectively in the MC simulations. 
Table 1 also shows p0 and pi for nanoporous structure with different lengths of simulation unit (�L = 0.5, 1 and 5 MFPs). 
Due to the pore boundary scattering, the transmittances of nanoporous structures are also less than these of cross-plane 
films. And when ε is given, the transmittances decrease with KnR increasing. Figs. 8(a) and (b) illustrate the effective 
thermal conductivity of this nanoporous structure along the pore axial direction varying with Lx . When KnR and ε are 
both given, the effective thermal conductivity of nanoporous structure increases with increasing Lx , and approaches to the 
value predicted by Eq. (16). Besides, Fig. 8(c) illustrates the limit effective thermal conductivity of nanoporous structure 
with Lx → ∞, and Table 4 compares the computation times of the standard and the two-step MC simulations. We note 
that the same conclusions as these obtained in the cases of cross-plane and in-plane nanofilms can also be found for the 
nanoporous structures, which further verifies the validity and efficiency of our two-step MC method.
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Fig. 9. Distributions of the cosine of polar angle of phonon boundary emission with various simulation unit lengths: μ = cos θ .

4.4. Deviation analyses

According to these three numerical experiments above, we can conclude that the results predicted by the two-step 
MC method are slightly less than those obtained by the standard MC simulation, and their deviations can decrease with 
increasing lengths of simulation unit. For the two-step method, an important assumption has been adopted that the internal 
units hold the same phonon transmittance pi , which should be responsible for this deviation. Actually, since the phonon 
boundary emission distributions at the internal virtual boundaries vary with increasing Lx , the phonon transmittances of 
internal units should also vary with increasing Np , though their differences are considerably small especially for the cases 
with a large simulation unit length, as shown in Table 1.

Fig. 9 illustrates the distributions of the cosine of the polar angle (μ = cos θ ) of the boundary phonon emission with 
the various simulation unit lengths. We only take the polar angular distribution into account, since for angular distribution 
it is the dominant factor that influences the value of phonon transmittance in our numerical experiments. When phonon 
bundles emit from the isothermal boundary, Lambert’s cosine law corresponds to the linear distribution of μ. Then, the 
internal and boundary scattering events in the simulation unit will make its distribution approach to parabola, which means 
the proportion of the phonon bundles whose μ is close to 1 increases when compared to Lambert’s emission. For one given 
structure, the distribution of μ is shifted to the end of μ = 1 with increasing �L, since more scattering events can influence 
the phonon transport in the unit with a larger length. This shift effect of angular distribution can lead to the increase of 
phonon transmittance of the internal units with increasing Np . In Sec. 3, we neglect this effect and assume a same phonon 
transmittance of the internal units, which results in the under-prediction of the two-step MC method.

Fig. 10 shows the spatial distributions of boundary phonon emission with the various simulation unit lengths. When 
phonon bundles emit from the isothermal boundary, the spatial distribution should be uniform. Besides, the spatial distri-
bution is always uniform in the cross-plane nanofilms due to the absence of the boundary scattering, and this is the reason 
why Fig. 10 does not illustrate the case of cross-plane nanofilm. As shown in Fig. 10, the diffusive boundary scattering in the 
simulation unit can reduce the number of emitting phonon bundles near the corresponding scattering boundaries, leading 
to the shift of spatial distribution to the region without the diffusive-scattering boundaries. As a result, the spatial distribu-
tion for in-plane nanofilm is shifted to the center region, while that for the nanoporous structure is shifted to the specular 
outer boundaries. The shift effect of spatial distribution can also cause the increase of the phonon transmittance. However, 
different from the angular distribution, the spatial distribution of phonon emission at the internal virtual boundary does not 
significantly vary with increasing �L, and thus only leads to the minor increase of the internal phonon transmittance with 
increasing Np .

5. Conclusions

The phonon tracing MC simulation is an extensively-used method to simulate the phonon transport in nanostructures. 
However, due to the demand of absorbing boundaries, it cannot efficiently simulate the heat conduction in the large area 
periodic nanostructures yet. In the present work, we develop a two-step MC method to overcome the deficiency of the 
periodic boundary condition in the standard phonon tracing MC simulation. Our two-step MC method contains two basic 
simulation steps: (i) Phonon transport is simulated in the initial unit to obtain the initial phonon transmittance and the 
phonon emission distributions at the internal virtual boundary; (ii) According to the phonon emission distributions at the 
internal virtual boundary, the phonon transport in the internal unit is simulated to obtain the internal phonon transmittance. 
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Fig. 10. Spatial distributions of phonon boundary emission with various simulation unit lengths.

By combining the initial and the internal phonon transmittances, we can derive the total phonon transmittance, and then 
obtain the effective thermal conductivity of the whole structure.

Three numerical experiments have been conducted to verify our two-step MC method. The two-step MC method well 
estimates the results by the standard MC simulation and the theoretical models. More importantly, it can greatly reduce 
the computation time without causing significant deviation, when compared to the standard MC method. As the length of 
simulation unit is larger than 1 MFP, the under-prediction of two-step MC method should be less than about 10% (even 
5%), while the computation time is reduced by more than one order of magnitude. Besides, when the length of simulation 
unit is larger than 5 MFPs, the two-step MC method can even simplified as a one-step MC method by taking the initial 
phonon transmittance as the alternative of the internal phonon transmittance, which can further reduce the computation 
expense. In fact, our two-step MC method could also be extended to investigate the radiation transfer and the neutron 
transport problems such as modeling the ceramics nuclear fuels [42], since all these phenomena can be characterized by 
the Boltzmann transport equation.
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