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Abstract
The heat generation of electronic devices is increasing dramatically, which causes a serious
bottleneck in the thermal management of electronics, and overheating will result in performance
deterioration and even device damage. With the development of micro-machining technologies,
the microchannel heat sink (MCHS) has become one of the best ways to remove the
considerable amount of heat generated by high-power electronics. It has the advantages of large
specific surface area, small size, coolant saving and high heat transfer coefficient. This paper
comprehensively takes an overview of the research progress in MCHSs and generalizes the
hotspots and bottlenecks of this area. The heat transfer mechanisms and performances of
different channel structures, coolants, channel materials and some other influencing factors are
reviewed. Additionally, this paper classifies the heat transfer enhancement technology and
reviews the related studies on both the single-phase and phase-change flow and heat transfer.
The comprehensive review is expected to provide a theoretical reference and technical guidance
for further research and application of MCHSs in the future.

Keywords: microchannel heat sink, thermal management of electronics,
microscale heat transfer, heat transfer enhancement

1. Introduction

The advent of the semiconductor device in 1948 promoted
technological innovations and caused revolutionary pro-
gress in many fields. With the rapid development and pro-
gress of microelectronic systems, micro-electro-mechanical
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system (MEMS), super-large-scale integration and their
related manufacturing technologies, in particular the rise of
third-generation semiconductor materials (such as SiC and
GaN), electronic chips and devices tend to be more multi-
functional, multi-integrated, high-power and miniaturized.
The Taiwan Semiconductor Manufacturing Company has offi-
cially announced the mass production of 3 nm chips in
December 2022 and will implement 2 nm chips in 2024. In
the meantime, Intel plans to mass-produce its 20 Å chips in
2024, and its nanoscale 18 Å process has already been in trial
production. It is predicted that manufacturing process techno-
logy could reach 0.1 nm in 2050. As the size of the chip and
transistor continues to shrink, it becomes more and more dif-
ficult to maintain Moore’s law.
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Figure 1. Development trends of chip performance and related thermal problems.

There will be a sharp increase in the heat production and
heat flux in the chips caused by factors including smaller size,
faster running speed, higher package density and higher work-
ing power, which will necessarily lead to temperature rise.
When the rated temperature of chips and electronic devices
is exceeded, many negative effects, even damage, will appear
[1–5] (figure 1), such as:

(1) Thermal failure: when the chip works above the temper-
ature of 70 ◦C–80 ◦C, its reliability will decrease by 5% every
1 ◦C increase in temperature, and the chip failure rate increases
exponentially along with the rise in temperature. In addition,
exceeding the operating temperature accounts for 55% of the
chip failure factors.

(2) Operating parameters’ variation: the parameters of
the electronic device itself will change with temperature.
For example, the switching delay time of an insulated gate
bipolar transistor increases with the rise in the device junction
temperature.

(3) Stress damage and thermal breakdown: different mater-
ials in a device have different thermal expansion coefficients,
while the excessively high junction temperature will cause ser-
ious thermal stress in the chip, resulting in solder bending,
bonding wire loss, and other problems. Furthermore, the high
temperature will lead to thermal breakdown and even irrevers-
ible thermal melting damage.

(4) Influence on volume and weight: the industry pays
more attention to the electrical design than the heat dissip-
ation system, thus lacking thermal enhancement theory and
neglecting the improvement of heat dissipation efficiency.
Nevertheless, an unreasonable heat dissipation system often
makes the whole equipment heavy and oversized, which is
against the development tendency of electronic devices.

Heat production in electronics is characterized by heat con-
centration [6], limited heat dissipation area, multiple applica-
tion conditions [7], complex and variable environments, inter-
disciplinarity [8], and multi-physical field coupling [9]. At
present, the commonly used approaches in the area of electron-
ics thermal management include air cooling [7], thermoelec-
tric cooling [10–13], immersed liquid cooling, phase-change
cooling, heat pipe [14–16], spray cooling and microchannel
cooling [17]. The heat dissipation capacities of these com-
mon cooling methods under normal circumstances are shown
in figure 2. With the rapid development of electronic techno-
logy, the heat flux generated by the new generation of micro-
electronic devices has reached 1500 W·cm−2 [10, 11, 14],
while the maximum heat flux dissipated by the air-cooling sys-
tem is about 100 W·cm−2 [7]. It means that the air-cooling
approach can no longer meet the current and future high heat
flux dissipation requirements. The heat dissipation capacity of
the heat pipe is generally less than 200 W·cm−2 due to the
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Figure 2. The roadmap of common cooling methods in electronics.

Figure 3. Schematic of parallel MCHS. (a) Schematic parallel microchannels. (b) Double-layer parallel microchannel.

limitation of capillary force. According to the current state and
future trend, spray cooling and microchannel cooling are very
likely to solve the thermal management problem. For spray
cooling, accelerating the droplets will demand large space and
high pumping power, which is contrary to the trend of mini-
aturization of electronic devices. As micromachining techno-
logy has developed, the microchannel heat sink (MCHS) has
become a superior way to solve the heat dissipation problem
of electronics, which has the advantages of large specific sur-
face area, small size, coolant saving and high heat dissipation
capacity.

The MCHS was first proposed by Tuckerman and Pease
[18] in 1981. The first design is the parallel microchannel
(figure 3). The authors processed rectangular channels on
a 10 mm × 10 mm silicon wafer, with a single channel
0.302 mm× 0.05 mm× 10 mm in size. The MCHS cooled by
water can dissipate a heat flux up to 790 W·cm−2 at a volume
flow of 8.6 cm3·s−1 when the temperature rise is 70 ◦C. Its

thermal performance was ahead of the known coolingmethods
at that time, which fully shows the huge potential of micro-
structure heat dissipation.

The microscale flow and heat transfer phenomenon is
always the hotspot of electronics thermal management. There
are two main ways to classify microchannels. One is accord-
ing to the channel hydraulic diameter. Generally speaking,
a channel with a hydraulic diameter of 10–1000 µm is a
microchannel, while some other researchers refer to channels
with hydraulic diameters of 10–200 µmasmicrochannels. The
other is based on the ratio of buoyancy to surface tension.Most
studies adopt the former, especially the principle proposed by
Kandlikar and Grande [19].

As the characteristic scale of the channel is getting smal-
ler, some new phenomena and rules will appear in the pro-
cess of fluid flow and heat transfer, which are quite different
from the conventional-scale heat sinks. Some factors that can
be ignored in conventional conditions, such as viscous force,
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Figure 4. Flow calculation model defined by Kn number.

surface tension, friction and capillary force, may have signi-
ficant effects on microchannel flows. The scale effect can be
divided into two regimes. One is that the scale of the research
object is equivalent to that of the mean free path of molecules.
At this point, the continuum assumption is no longer valid, and
the basic law of flow and heat transfer needs to be studied and
described at a molecular level. The other is that the scale of
the research object is much larger than that of the molecular
mean free path, and, thus, there is no fundamental change in
the mechanism. The continuum hypothesis and all the basic
laws applicable to the conventional conditions are still valid.
The reduction of scale only influences the relative importance
of various factors. As for the research onMCHSs, the Knudsen
number is generally the criterion to determinewhether the con-
tinuum assumption is applicable (figure 4).

Fedorov and Viskanta [20] developed a three-dimensional
model to study the flow and heat transfer process inMCHSs. It
was calculated by the Navier–Stokes equations of incompress-
ible laminar flow. They implemented this model to analyze
the velocity and temperature field and compared the predicted
thermal resistance and friction factors with the correspond-
ing experimental data to verify the validity of the theoret-
ical model. This work provides important practical guidance
for the application of MCHSs. Qu and Mudawar [21] also
demonstrated the accuracy of the three-dimensional model
governed by the Navier–Stokes equations. At present, for
research on MCHSs, the scale effect involved belongs to the
second regime. That is, the liquid flow in microchannels is
mainly in the continuous flow zone, and it is reasonable to
neglect the influence of boundary conditions such as velo-
city slip or temperature jump. The continuum assumption,
the Naiver–Stokes equations and the Fourier law are still
applicable.

With the progress in modern electronic technology, MEMS
and microscale heat transfer theory, the MCHS has drawn

a lot of attention in industry and academia. This approach
has been widely used in the fields of electronics, aerospace,
refrigeration, chemical engineering and biological engineer-
ing. In this paper, recent progress in MCHSs is outlined from
aspects including microchannel structures and optimization
design, working coolant, phase-change flow and heat trans-
fer, microchannel materials, and other influencing factors. The
development trends and prospects will also be mentioned in
the last section.

2. Microchannel structure and optimum design

Many researchers have carried out extensive and in-depth stud-
ies on MCHSs and analyzed the flow and heat transfer in dif-
ferent structures [22–25]. The parallel straight channel is the
original structure first proposed by Tuckerman and Pease, and
was adopted in the early-stage studies for a long time. With
continuous development of MEMS, MCHSs began to adopt a
variety of shapes (figure 5). There is relatively large optim-
ization potential to explore the thermal enhancement meth-
ods for MCHSs by designing channel layout, channel surface
microstructures, channel sections, geometric parameters and
so on. Table 1 summarizes the advantages and drawbacks of
microchannel geometries and optimization methods involved
in MCHSs, and detailed information will be introduced in the
following section.

2.1. Single and simple structure

MCHSs with different channel sections will have different
heat dissipation performances [26–28]. Early studies gen-
erally investigated the microchannel sections such as rect-
angular, trapezoidal and circular channel section shapes
(figure 6).
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Figure 5. Various structural forms of microchannels.

Table 1. Microchannel geometry and optimization design of MCHS.

Microchannel geometry Optimization method Advantages Drawbacks

Conventional structures
(like different section
shapes, ribs, grooves, wavy
shapes, etc)

Comparison one by one • Evaluating the performance
accurately

• No analytical method used

• Unable to confirm optimal solution
• Hard to reflect the interrelation of

multiple influencing variables

Single-objective
optimization

• Obtaining locally optimal value
• Getting the empirical formula

for analysis and prediction

• Only one objective concerned
• Unable to confirm the overall

performance

Multi-objective
optimization

• Obtaining locally optimal value
• Improving the overall

performance simultaneously
• Getting the empirical formula

for analysis and prediction

• Large database required
• Expensive computational cost
• Sensitive to optimization settings

Unconventional structures
(like biomimetic shapes,
topological shapes, etc)

Comparison one by one • Evaluating the performance
accurately

• No analytical method used

• Unable to confirm optimal solution
• Hard to reflect the interrelation of

multiple influencing variables

Topology optimization • High design freedom
• More inspiring design
• Bringing breakthrough in flow

and thermal performance

• Sensitive to optimization settings
• Hard to fabricate
• Unclear mechanism
• Expensive computational cost

Figure 6. MCHS with three different channel section shapes. (a) Rectangular. (b) Trapezoidal. (c) Circular.
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Figure 7. Research on the variable structures of MCHSs. (a) Microchannel with Y-type bifurcations. Reprinted from [38], © 2017 Elsevier
Ltd. All rights reserved. (b) Microchannel with wavy shape along the flow direction. Reprinted from [39], Copyright © 2010 Elsevier Ltd.
All rights reserved. (c) Microchannel with transverse channels. Reprinted from [40], Copyright © 2005 Elsevier Ltd. All rights reserved.

The heat transfer characteristics of single-phase forced
convection in microchannels are closely related to the geo-
metric parameters of channels, such as the hydraulic diameter
and the depth to width ratio of the channel [29]. The optimal
design can be obtained by adjusting the geometric parameters
[30]. However, researchers fail to reach an agreement on the
best-performing shape for a microchannel. Chen et al [31]
believed that the triangular microchannel performed the best
in heat transfer, followed by the trapezoidal microchannel, and
the rectangular microchannel is the worst. Nevertheless, the
results of Gunnasegaran et al [29] showed that the heat transfer
efficiency in order from high to low is rectangular, trapezoidal
and triangular microchannels. To further explore the influ-
ence of microchannel section shape, Wang et al [32] simu-
lated MCHSs with different cross-section shapes and aspect
ratios while maintaining the same cross-section area. They
showed that the thermal resistance of the rectangular MCHS
is the smallest, and that of the triangular MCHS is the largest.
Meanwhile, in the rectangular MCHS with the same cross-
section area, the channels with higher aspect ratio usually have
lower thermal resistance. Considering that parallel and regu-
lar structures are relatively easy to manufacture, the rectangu-
lar MCHS with high aspect ratio is commonly used in related
research. The divergence of these conclusions is probably due
to the failure in variable control.

2.2. Variable and complex structures

Because of the rapid increase of heat flux in micro-devices,
the simple structure of microchannel heat exchangers can-
not meet the demand, and the research has gradually moved
towards complex microchannel structures. There are many
novel designs proposed to promote flow turbulence and heat
exchange, such as ribs [33], grooves [34], nanofins [35] and
some other complex structures [36].

Some researchers carried out research on heat transfer
enhancement by changing the shapes of the channel wall,
amongwhich the typical designs include T-type, Y-type, wave-
type, convergent-type, and periodically variable cross-section
channels. Yagodnitsyna et al [37] studied the immiscible ionic
liquid water in a T-type microchannel with a hydraulic dia-
meter of 160 µm when the aspect ratio was 2 or 4. The res-
ults show that the rectangular microchannel with higher aspect
ratio performs better. Shen et al [38] analyzed the influence
of the positions of the internal vertical bifurcations placed in
rectangular microchannels on pressure drop and heat transfer
characteristics numerically (figure 7(a)).

Compared with the traditional long, straight microchan-
nel, the microchannel with wavy shape along the flow dir-
ection will generate a Dean vortex inside, which disturbs the
boundary layer and is beneficial to heat transfer. Mohammed
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et al [39] designed a corrugated MCHS (figure 7(b)). The
simulation results indicate that the heat transfer performance
of a corrugated microchannel is obviously better than that of
a straight microchannel of the same length because of the
increased heat transfer area. Although the pressure drop of a
corrugated microchannel is greater, its loss is far less than the
heat transfer enhancement effect. However, more efforts are
needed to investigate the underlying mechanism of thermal
transfer enhancement in wavy microchannels.

The change of the channel section along the flow direction
can also enhance the flow and heat transfer. Dehghan et al
[41] used the finite volume method to study the MCHS with
converging channels and found that Nu increased gradually as
the structure got thinner. The optimal width-tapered ratio is
0.5. When the pressure is limited below 3000 Pa, the pumping
power is reduced by 75% compared with the straight channel,
and the overall thermal efficiency remains unchanged. Chai
et al [42] studied the flow and heat transfer characteristics in
the periodically changeable cross-section microchannel and
found that the heat transfer was significantly improved com-
pared with the straight channel, while the increase in pressure
drop was small. Xu et al [40] designed a new silicon-based
MCHS (figure 7(c)), which added transverse microchannels
across the traditional parallel straight channels. The substrate
is blocked along the flow direction, and thus generates a devel-
oping thermal boundary layer similar to the flow inlet, which
significantly improves the heat dissipation capacity of the heat
sink. In addition, its pressure drop also decreases.

Metal ribs are widely used to enhance heat transfer in
microchannels because of their high thermal conductivity and
obvious effect on fluid disturbance. The common rib shapes
include circle, oval, rectangle, diamond and triangle, and
some like rectangular inclined ribs, sidewall misalignment
ribs, staggered trapezoid ribs and V-shaped ribs are also in
development.

There are many experimental and numerical studies focus-
ing on the shapes, heights and arrangements of the ribs
(figure 8(a)) and investigating the influence of these vari-
ables on thermal convection and pressure drop under different
Reynolds numbers (Re) [33, 43–47]. Some researchers also
find that if the ribs are not through the height of the chan-
nel (i.e. there is clearance between the top of the rib and the
channel ceiling), the pressure drop may reduce without heat
transfer worsening. Moores et al [45] conducted experiments
on cylindrical rib MCHSs with rib height-to-diameter ratios
ranging from 0.5 to 1.1 (figure 8(b)). It was found that when
the ratio of tip clearance to section diameter is 0.05–0.1, the
total pressure drop increases with the increase of clearance.
When the ratio is greater than 0.1, the pressure drop is smal-
ler than that without clearance. Mei et al [46] simulated the
hydrodynamics and thermal properties under different ratios
of channel height to rib height in microchannels with micro-
pin-fin arrays, and concluded that when Reynolds number was
33–350, the channel with the ratio 1.1 or 1.2 performed bet-
ter than that without tip clearance. The ribs can also combine
with secondary oblique microchannels or other heat transfer

enhancement techniques. Ghani et al [47] studied the flow and
heat transfer characteristics of rectangular rib microchannels
and secondary oblique microchannels with Re ranging from
100 to 500 by numerical calculation. Additional flow is injec-
ted through secondary channels to further enhance flow mix-
ing, and these channels can provide a larger flow area to reduce
the pressure drop caused by the ribs.

Optimizing structural parameters, arrangement patterns
and tip clearance of ribs can all improve thermal diffusivity,
though their thermal transfer enhancement mechanisms are
different. However, adding ribs often induces higher pressure
drop. In addition, variable control should be guaranteed when
comparing ribs with different sectional shapes.

In 2008, Ridouane and Campo [50] conducted simula-
tions and demonstrated that the microchannel with grooves
had superior heat transfer performance. After that, the study
of groove structure in rectangular microchannel gradually
developed. Pan et al [48] introduced a fan-shaped groove
structure into a straight microchannel with a rectangular
section (figure 8(c)). The heat transfer performance of the
microchannel with grooves proved to be better. There is an
optimal groove deviation degree and the smaller the overlap
degree of grooves is, the better the microchannel performs.
Additionally, at a high flow rate of coolant, the groove-type
microchannel with sparse front and dense rear arrangement
will have better performance.

Unlike the needle rib, the dimpled structure often has a
smaller heat transfer surface area, which will slightly weaken
the heat transfer enhancement. However, its relatively smooth
surface has little blocking effect on the working fluid, thus sav-
ing the pumping power [51]. Based on this, it is proposed to
combine the dimpled surface and needle ribs to achieve high
efficiency and low flow resistance simultaneously. For relat-
ively low heat flux area, the dimpled structure can reduce the
pressure drop as well as increase the heat transfer, and for
the high heat flux, the needle rib can achieve considerable
heat transfer enhancement. Li et al [49] designed an MCHS
with cylindrical needle ribs and dimpled structures alternately
arranged on the channel side wall (figure 8(d)). The research-
ers studied the influence of parameters such as the diameter of
the needle rib, the height of the dimpled structure and the cen-
ter distance between them, and the optimal combination of the
parameters were obtained. The results show that the decrease
of the center distance and the increase of the needle rib dia-
meter are beneficial to heat transfer, and the needle rib dia-
meter is the most important factor among the three variables,
followed by the cell height.

These related studies show that the heat transfer enhance-
ment is caused by two aspects: on the one hand, the change
of microchannel sections and integrated barriers can interrupt
the thermal boundary layer. The flow in microchannels is not
fully developed, so as to enhance the thermal convection near
the channel wall. The complex flow path can also promote the
perturbation and mixing of the coolant. On the other hand, the
heat transfer surface area is increased significantly by adding
solid parts in the channel or breaking the continuous wall.
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Figure 8. Research on the MCHS with ribs, grooves and dimpled walls. (a) Interleaved rib arrays with different sectional shapes. Reprinted
from [43], © 2016 Elsevier Ltd. All rights reserved. (b) Microchannel with cylindrical ribs. Reprinted from [45], Copyright © 2009 Elsevier
Ltd. Published by Elsevier Ltd. All rights reserved. (c) Microchannel with fan-shaped grooves. Reprinted from [48], © 2019 Elsevier Ltd.
All rights reserved. (d) Microchannel with dimpled structures and needle ribs alternately arranged. Reprinted from [49], © 2017 Elsevier
Ltd. All rights reserved.
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A reasonable design should make full use of these advantages
with an acceptable pressure drop.

2.3. Optimization design of microchannel structure

Although the MCHS has been regarded as an efficient thermal
management method for electronic chips and devices, the sim-
ulation and experiment results reflect that it still has the poten-
tial to be improved. For example, the fluid temperature will
rise along the flow direction, which will cause non-uniform
temperature distribution and thermal stress inside the device.
Furthermore, the high pressure drop in the microchannel is
also challenging for the micropump.

A superior MCHS should dissipate more heat under lower
pumping power. The thermal resistance, temperature distribu-
tion and pressure drop are all important criteria to evaluate the
overall performance of an MCHS. Above all, the geometric
structure of the microchannel plays the main role in affect-
ing the flow and heat transfer of microchannels, and thus is
the major optimized variable [52]. The optimization studies
mainly focus on the aspect ratio, hydraulic diameter, shape of
the channel and so on. The optimization objective is usually to
minimize the thermal resistance, minimize the pressure drop
or improve the temperature uniformity. Sometimes, research-
ers also optimize a combination of them, while Chen [53] set
entropy generation rate minimization as the objective by neg-
lecting the fluid temperature variation in the lateral direction.

It is essential to get the numerical expression of the optimiz-
ation objective before implementing the optimization method.
As the correlation between the objectives and variables is gen-
erally complex, an enormous dataset is required to analyze
the mechanism and fit the empirical formula. The data here
are mainly obtained by simulations or experiments, which
demands high computational or experimental costs. Therefore,
some researchers proposed to utilizemachine learning (ML) to
extend the prediction region of multi-variable problems based
on limited data. The commonly usedMLmethods contain arti-
ficial neural networks [54], random forests, Gaussian process
regression [55], extreme gradient boosting [56] and so on.

To date, there have been many optimization methods
applied to microchannel design [57–61]. Hung et al [62]
used the simplified conjugate-gradient method to optimize a
double-layered MCHS. At the given pumping power condi-
tions, they obtained optimal designs rapidly. Arie et al [63]
optimized the manifold microchannel (MMC) with a multi-
objective optimization method. This indicates that the mani-
folds also have potemtial for optimization. Shi et al [64] imple-
mented the NSGA-II algorithm to optimize microchannels
with secondary flow. Compared with the straight microchan-
nel, the optimal design reduced the thermal resistance by
28.7% and, meanwhile, reduced the pumping power by 22.9%.

For conventional structures, the geometric parameters of
the microchannel are the critical factors that influence its
thermal transfer performance. Most studies only concen-
trate on these and try to optimize the geometry shape and
parameters of the channel with different optimization meth-
ods. Nevertheless, some unconventional shapes also attract

people’s attention. Some biomimetic patterns such as leaf
[65], snowflake and spiderweb [66] have been investigated
and found to be efficient in heat transfer and temperature uni-
formity. With the introduction of topology optimization into
solid–liquid heat transfer, many researchers have used topo-
logy algorithms and presented many pioneering topological
structures of MCHSs, which show extraordinary perform-
ance in flow and heat enhancement. As shown in figure 9(a),
Xia et al [67] obtained quite different optimal results with
different inlets and outlets and different weights of object-
ives. They conducted topology optimization in a simplified
2D model. Gilmore et al [68], however, optimized 3D struc-
tures directly and obtained a rebuilding of the channel region
(figure 9(b)). Considering the fabrication and feasibility, most
studies focus on the 2D shape and validate it with the cor-
responding 3D structure. As the manufacturing process has
developed, topology-optimized designs have been fabricated
to verify their advantages experimentally (mainly by a ste-
reolithography process [69] or computer numerical control
carving [70] for metal). Unfortunately, the optimal results are
sensitive to the parameters and objectives, so it is hard to
determine which one is superior under different settings. In
addition, it is still very difficult to fabricate such complex
shapes in microscale, especially for semiconductor materials.
More efforts should be devoted to advanced processes and
experimental research.

3. Working fluid

Besides the microchannel structure, the working fluid also
influences the performance of heat sinks directly. The work-
ing fluid is expected to have efficient thermal properties, good
chemical stability, low viscosity and non-corrosiveness. It also
needs to be non-volatile under the operating conditions and
environmentally friendly to some extent. The working fluid
will be outlined in this section (figure 10) [71–74].

3.1. Conventional working fluid

The most commonly used coolants in MCHSs are air, deion-
ized water and organic liquids (e.g. R134a, R22 and HFE-
7100). Air has poor thermal conductivity and heat capa-
city, which can only meet the thermal dissipation demand of
low-power working conditions [75]. Liquid coolants such as
water perform better in convective heat transfer, and thus are
more economical and practical in MCHSs for high heat flux
electronics [76–78]. When Tuckerman and Pease [18] first
presented the concept of the MCHS, they used water as the
coolant and dissipated a heat flux of 790 W·cm−2 with a tem-
perature rise of 70 ◦C at a flow rate of 8.6 cm3·s−1.

3.2. Nanofluid

As the nanofluid attracts more and more researchers’ interest,
it has become an alternative coolant for thermal transfer
enhancement. By adding solid nanoparticles in the base fluid,
the thermal conductivity of the mixture can be improved

9



Int. J. Extrem. Manuf. 6 (2024) 022005 Topical Review

Figure 9. Topology optimization of the MCHS. (a) 2D optimal design. Reprinted from [67], © 2022 Elsevier Ltd. All rights reserved. (b)
3D optimal design. Reprinted from [68], © 2021 Elsevier Ltd. All rights reserved.

Figure 10. Working fluid in MCHSs.

dramatically, which can contribute to the heat dissipation
[79–82].

According to related research, the thermal resistance
will decrease and the extra pressure drop caused by the

nanoparticles can be neglected when the nanofluid concen-
tration is low, while the nanofluid with high particle volume
fraction will weaken the heat transfer enhancement due to
the significant increase in the viscosity [83–85]. Wu et al
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[86] investigated the effectiveness of Al2O3/H2O nanofluid on
improving the overall performance of MCHSs. They found
that Al2O3/H2O nanofluid can efficiently reduce the thermal
resistance and improve the uniformity of temperature distribu-
tion on the base surface. However, the pumping power required
for theMCHSwill increase rapidly as the particle volume frac-
tion and inlet velocity increase. It should be noted that the
nanofluid can enhance the heat transfer only when the pump-
ing power is high enough, and thus, a moderate inlet velocity
needs to be selected to save the pumping power.

Until now, many researchers have carried out simulations
to study the MCHS cooled by a nanofluid. The research meth-
ods can be generally classified into two models: one considers
the nanofluid as a two-phase mixture. The random motion of
solid nanoparticles in the base fluid can enhance the heat trans-
fer. The other is the single-phase model, which assumes that
the fluid and nanoparticles are in thermal equilibrium without
relative velocity. Many studies adopt the single-phase model
to simplify the governing equation. When the particle volume
fraction is low, the nanoparticles can be considered uniformly
distributed in the base fluid, and the nanofluid can be supposed
as a novel single-phase liquid, of which all the properties such
as density, heat capacity, thermal conductivity and viscosity
should be reevaluated by new models, such as the 3D porous
media approach and the 3D solid and fluid coupling approach
[87–90].

Most of the previous simulation studies had not been valid-
ated by experiment until 2007 [91]. Chein et al [92] first con-
ducted experimental research on the MCHS using CuO–H2O
mixtures, of which the CuO particle volume fraction was in
the range of 0.2%–0.4%. After that, Ho et al [93] investigated
the performance of MCHS cooling by Al2O3/water nanofluid.
Azizi et al [94] evaluated the convective heat transfer coef-
ficient and pressure drop of a cylindrical MCHS with a Cu–
water nanofluid. They show that a high heat transfer coefficient
is obtained using the nanofluid at 0.3 wt%without a large pres-
sure drop. However, further increase in Re after reaching a cer-
tain value will lead to the reduction of thermal efficiency and
heat transfer ability. This is because the nanoparticles move
too fast to have sufficient contact time with the channel wall at
a high flow rate and, therefore, fail to enhance the heat transfer
between the heat sink and coolant. Therefore, it is essential to
find the optimal flow rate for a nanofluid for the heat transfer
process.

In conclusion, both experimental data and simulation ana-
lysis suggest that a nanofluid is a good alternative coolant in
MCHSs since it can improve the thermal performance at a
low volume fraction condition with an increase in pressure
drop that is acceptable. However, the nanofluid is not stable
enough and is prone to agglomeration and precipitation due to
the high surface energy of nanoparticles. This maymake block
the channel and cause the system to break down. To improve
nanofluid stability, on the one hand, it is meaningful to des-
troy the weak interaction between the particles. Mechanical
agitation or ultrasonic oscillation can be applied to get a tran-
siently stable fluid. Nevertheless, when the mechanical oper-
ation stops, the nanofluid tends to agglomerate again. Adding

dispersant can solve the problem effectively and has become
a favored method to improve the nanoparticle preparation.
On the other hand, some approaches, such as surface coat-
ing modification or surface grafting modification, can modify
functional groups in the particles and improve the surface wet-
ting properties, which can inhibit chemical bond formation
and make the nanofluid more stable. In addition, the shape
and size of nanoparticles also affect the stability. To obtain a
high-quality particle suspension, there is a need to reduce the
particle size, lower the concentration, reduce the contact prob-
ability between particles and lighten the impact of gravity.

3.3. Liquid metal

Compared with water, liquid metal has a higher thermal con-
ductivity. Therefore, metals with low melting points can be
used as the coolant for the thermal management of electronic
chips and devices [95]. For example, the thermal conductivity
of gallium (Ga) is about 60 times more than that of water, and
1000 times more than that of air. Additionally, the liquid metal
can be used in microchannels and thus can dissipate the heat
effectively [96]. Therefore, it is appropriate to explore liquid
metal for microchannel cooling.

In 1988, Smith’s team [97] at Argonne Laboratories in
the United States developed a liquid Ga cooling system to
replace the traditional water cooling for the heat dissipation of
optical elements in the Advanced Photon Source device, with a
highest heat flux of 1400 W·cm−2. The results show that this
method has a significant enhancement effect compared with
water cooling.

In order to further improve heat transfer efficiency and pro-
mote the application of liquid metal, many researchers car-
ried out experiments to verify the performance of liquid metal
MCHSs. The study of Zhang et al [98] showed that a GaInSn-
based microchannel cooling system can dissipate a heat flux of
300W·cm−2 and heat power of 1500W (figure 11). This indic-
ates that GaInSn-based microchannel cooling can obtain much
larger heat transfer enhancement and lower pressure losses
than water-based microchannel cooling. Moreover, it was also
found that heat capacity thermal resistance becomes a rather
important factor for GaInSn-based microchannels, due to the
high thermal conductivity and low heat capacity of GaInSn.
Zhang et al [99] designed a vascularized liquidmetal heat sink.
The experiments indicated that vascularized liquid metal cool-
ing can achieve 2000 W heat dissipation of a high-power laser
diode array, with a maximum temperature of the heat sink top
surface lower than 54 ◦C.

It is feasible to apply a liquid metal with a low melt-
ing point to the thermal management of electronics. A new
concept, i.e. nano liquid metal, brings a new option for reli-
able coolants. However, the current theoretical achievements
are still far away from being widely used in industry. There
is still a need to select more kinds of liquid metal suitable
for various working conditions and to summarize the empir-
ical formula to predict the flow and heat transfer performance.
Furthermore, there is a need to improve the manufacturing and
packaging of liquid metal MCHSs.
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Figure 11. The design and experimental results of Zhang et al. (a) Structure of liquid metal-based rectangular MCHS. (b) Nusselt number
and convection heat transfer coefficient of liquid metal-based rectangular MCHS. Reprinted from [98], © 2019 Elsevier Ltd. All rights
reserved.

3.4. Non-Newtonian fluid

The heat transfer capabilities of Newtonian fluids are limited
because of their poor thermal conductivity. It is hard to further
improve the cooling efficiency of Newtonian fluids without
changing the channel shape due to the fact that the flow in
microscale structures is mostly laminar flow, and the heat
transfer coefficient appears low. For the nanofluids mentioned
above, the preparation is usually costly, and the nanoparticles
tend to adhere to the wall of the microchannels, leading to high
flow resistance [100–102]. Hence, some researchers introduce
non-Newtonian fluids for microscale heat transfer. They find
that, as a nonlinear continuum fluid, its inner nonlinearity
effect will cause flow instability. This can produce turbulence
contributing to the heat transfer [103]. In this section, two typ-
ical types of non-Newtonian fluids, i.e. pseudoplastic fluid and
viscoelastic fluid, will be introduced.

3.4.1. Pseudoplastic fluid. A pseudoplastic fluid refers to
one for which the flow conforms to the pseudoplastic flow
law. The apparent viscosity of pseudoplastic fluid decreases
with the increase of shear stress or shear rate in the momentum
equation of a non-Newtonian fluid. This kind of fluid, without
yield stress, has already been widely used in microscale heat
transfer enhancement.

Li et al [104] used carboxyl methyl cellulose (CMC)
aqueous solutions to cool a dimpled/protruded MCHS. The
results reveal that when the CMC concentration is 2000 ppm,
the shear-thinning effect is enlarged, and it is demonstrated
that this can enhance the heat transfer efficiently. The authors
attribute this to the transformation of viscosity that acceler-
ates the separation of the secondary flow and vortex in dim-
pled/protrudedmicrochannels. Ebrahimi et al [105] carried out
simulations to study the shear-thinning effect on the thermal
performance of an MCHS with longitudinal vortex generat-
ors. They find that compared with a Newtonian fluid, CMC
aqueous solutions can achieve an enhancement of 6.82%–
31.18% in heat transfer.

In brief, a pseudoplastic fluid can promote the heat transfer
in both the steady and the unsteady state. The main reason is

that the shear-thinning behavior can help produce secondary
flow. However, at the same time, the flow resistance increases
due to the large viscosity. Until now, the studies on MCHSs
cooled by pseudoplastic fluids have generally been conducted
by simulation or just by selecting a specific structure for the
channel. More effort is still needed to explore the flow and
thermal performance of microchannels with different shapes.

3.4.2. Viscoelastic fluid. Another commonly used non-
Newtonian fluid is the viscoelastic fluid. It exhibits both vis-
cous and elastic characteristics in the deformation process.
Due to its specific properties, a viscoelastic fluid can enhance
heat transfer by producing elastic turbulence at low Re [106].
In recent years, some researchers have conducted studies on
viscoelastic fluid heat transfer in milli- and microchannels.

Whalley et al [107] proposed a serpentine channel with the
characteristic scale of 1 mm and demonstrated the enhance-
ment of heat transfer could reach 300% by producing elastic
turbulence in this channel structure. Tatsumi et al [108] car-
ried out experiments to study the thermal transfer perform-
ance of polyacrylamide in serpentine microchannels. They
showed that Nu (Nusselt number) will rapidly increase with
the increase of Re. They attributed the thermal enhancement
effect to the flow instability generated by the normal stress.
They also observed secondary flow and vortex structures in
the flow.

To date, research on viscoelastic fluid cooling in
microchannels has not been extensive. The mechanism of
heat transfer enhancement and the relation between the heat
exchange efficiency and the turbulent velocity field needs
to be further clarified. It is still a prospect to take advant-
age of the optimized designs with conventional coolants and
use a viscoelastic fluid instead to enhance the heat transfer
significantly.

4. Phase-change flow and heat transfer

Although the single-phase cooling in microchannel can
achieve a quite high heat transfer coefficient, it still has the
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disadvantage of uneven temperature distribution in the flow
direction, which will affect the operating condition of the elec-
tronics. Phase change cooling, however, can solve the high
temperature rise problem with a relatively low flow rate of
coolant [109–112]. Single-phase cooling has been discussed
above, and next, we will present an overview of the research
on phase-change flow and heat transfer.

4.1. Gas–liquid phase change

Flow boiling can reach a considerably high heat transfer coef-
ficient and better heat transfer capacity at a given flow rate.
Due to the small size of the microchannel, the bubbles gener-
ated during the flow boiling in an MCHS will be limited in a
narrow space and the surface tension, as well as the capillary
force, plays a more important role in microchannels than in
conventional channels. The effect of buoyancy is weakened
instead. The relative magnitude of gravity, buoyancy force,
inertial force, surface tension and capillary force affects the
two-phase flow patterns in microchannels. Additionally, con-
sidering factors like size effect, surface effect, compressibil-
ity and rarefaction of the coolant, there are obvious differ-
ences between microchannel flow boiling and conventional
pool boiling [113–116].

Qu and Mudawar [117] proposed a two-phase annular flow
model to calculate the heat transfer coefficient in microchan-
nels. The results show that the annular flow model can accur-
ately describe the decreasing trend in the heat transfer coeffi-
cient with the increase of gas volume fraction in the low gas
volume fraction region. Sur and Liu [118] studied the influence
of channel size and surface phase velocity on air–water two-
phase flow patterns and pressure drop in circular microchan-
nels. Two-phase flow patterns were observed by high-speed
camera, and four basic flow patterns were found: bubble flow,
slug flow, wave flow and annular flow. Wei et al [119] studied
the two-phase flow pattern of air and water flowing upwards
in a vertical narrow rectangular channel by using a volume
of fluid simulation model. The results show that the main
flow patterns of two-phase flow in the narrow-slit channel are
bubble flow, slug flow, turbulent flow and annular flow, and the
void fraction distribution is quite different. In addition, since
the Taylor bubble is located in the center of the groove and the
slug flow is an intermittent flow, the void fraction of the slug
flow is more evenly distributed in the center.

A study on the flow pattern of gas–liquid two-phase flow
and the transition characteristics between different flow pat-
terns can further reveal the characteristics of the friction res-
istance coefficient, liquid content, dryness, critical heat flux
(CHF) and instability in the fluid flow and heat transfer pro-
cess of two-phase flow. It can develop the theoretical research
on the two-phase flow based on experimental results. However,
due to the inherent complexity and diversity of the microscale
boiling phenomenon and the limitations of current test meth-
ods, there may be many flow patterns that have not been dis-
covered, and there is no unified standard on how to define
and differentiate the existing flow patterns. These bring chal-
lenges for research on gas–liquid phase-change flow and heat
transfer.

Unlike single-phase cooling, two-phase flow and heat trans-
fer involve some specific concepts, including the mass flow
rate of the two phases, the two-phase interfacial friction factor,
the CHF, flow instability, the onset of nucleate boiling and
dryness [120–124]. Li et al [125] performed saturated boil-
ing experiments using water and studied the effect of surface
wettability on the high aspect ratio microchannel. Their work
indicateed that with the increase of the steam flow rate and
heat flux, the heat transfer performance of the hydrophobic
silicon wafer deteriorates seriously, while that of the super-
hydrophilic silicon wafer surface is relatively stable. Kim and
Mudawar [126] summarized the prediction approaches for
pressure drop and heat transfer, and introduced the thermal
limit related to initial drying, premature CHF and two-phase
critical flow. The research showed that the deeper microchan-
nels can increase the maximum heat flux and reduce the pres-
sure drop, but will have a negative impact on the bottom
temperature.

The determination criterion for CHF has not reached an
agreement in related studies, and the channel structure and
working medium used in relevant experiments are not the
same, so the empirical formulas gained by researchers are
usually different. Park and Thome [127] found that, in the
microchannels with large cross-section, CHF would slightly
increase as the inlet temperature increased. However, this is
not related to the degree of inlet subcooling in a small cross-
sectional microchannel. In other studies, few of them declare
that CHF is associated with the degree of inlet subcooling. In
the work of Qu and Mudawar [128], they found that due to
the backflow of vapor in the microchannel, on the one hand,
the wetting of the incoming flow on the microchannel was
hindered, while, on the other hand, the subcooling effect of the
working medium on the microchannel almost disappeared, so
that CHF was almost independent of the degree of inlet sub-
cooling. In conclusion, there is still controversy on the mech-
anism of the experimental phenomenon of the flow boiling
heat transfer process in microchannels.

Many studies have been conducted on the influencing
factors in microchannel flow boiling instability [129, 130].
Zhang et al [131] observed by experiments that if the bubble
nucleation in the microchannel was difficult and the fluid in
the channel had a high superheat, once the bubble nucleation
formed, a large amount of gas would lead to rapid bubble
expansion. This will result in serious fluctuations of the pres-
sure in the microchannel. Then, due to the evaporation of the
liquid film on the wall, the temperature will rise rapidly. Flow
instability can be reduced by using microchannels with a suf-
ficient gasification core on the wall. Deng et al [132] proposed
a reentrant porous microchannel with an Ω-shaped configur-
ation (figure 12). The results show that nuclear boiling can
occur under lower superheat conditions due to the significant
increase of nucleation sites. In addition, whether the heat flow
or the mass flow dominates the heat transfer performance is
related to the transformation of the dominant heat transfer
mechanism.

The enhancement of heat transfer caused by nuclear boiling
is usually attributed to the rapid evaporation of the thin liquid
film below the bubble and the strong mixing after the bubble
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Figure 12. Phase change in the reentrant porous microchannel. Reprinted from [132], Copyright © 2015 Elsevier Ltd. All rights reserved.

leaves the nucleation site. In convective boiling, the heat
transfer is enhanced by the improvement of two-phase velo-
city and thin liquid film evaporation on the wall. At present,
no consensus has been reached on the dominant heat trans-
fer mechanism in microchannel flow boiling. The heat transfer
process is usually the result of the combination of single-phase
convective heat transfer, thin liquid film evaporation, nuclear
boiling, and surface droplet deposition, etc [133].

Although gas–liquid two-phase cooling has many advant-
ages, it requires a high-pressure pump to drive the flow of
bubbles. In addition, the non-condensable gas in the two-
phase flow system may enter the micropump and cause gas
blockages, and thus, there will be application limitations in
the aerospace field where high reliability is required. In con-
clusion, the research on the internal mechanism and working
characteristics of microchannel flow boiling is still in develop-
ment, and the gas–liquid two-phase MCHS is far from being
marketed widely.

4.2. Solid–liquid phase change

To further improve the cooling capacity, some people use
solid-to-liquid phase-change materials (PCMs) as the coolant
for their high latent heat and the small temperature change in
the phase-change process. PCMs can remove more heat in a
compact arrangement of electronics and require lower pump-
ing power than general liquids. Therefore, they have been con-
sidered as an efficient way to maintain the equipment temper-
ature environment over a long period of time [134–137]. This
section will discuss the research and application of the com-
monly used PCMs (i.e. liquid metal, microencapsulated phase
change material (MPCM) suspension and phase change emul-
sion) in MCHSs.

4.2.1. Microencapsulated phase change material (MPCM)
slurry. The MPCM slurry has a relatively high latent heat,

which is beneficial to store energy and for temperature control.
The application of this liquid can avoid leakage of the phase
change material and direct contact with the environment. Its
performance is better in narrow channels and depends on the
particle mass ratio of the slurry. The volume change of the
coolant can also be neglected in application [138–140]. The
study ofWu et al [141] indicated that the convective heat trans-
fer coefficient of the slurry is as high as 47 000 W·m−2·K−1,
which is greater than that of water.

At the same condition of Re, the MPCM slurry performs
better in heat dissipation than a single-phase coolant. The
heat transfer performance of the slurry can be increased by
increasing the concentration of the phase-change material.
Furthermore, phase-change particles with small diameters can
enlarge the specific surface area and enhance the ‘micro con-
vection effect’ between the particles and fluid, which can fur-
ther enhance the heat transfer. However, the existing studies
were conducted mainly based on the conventional scale chan-
nels, and more investigation is demanded for microscale chan-
nels. In addition, the preparation process for MPCM slurry is
really difficult, and the polymer shell can be easily destroyed
in the flow process [142–144].

4.2.2. Phase-change material emulsion. Nanoparticles of
the phase-change material can be uniformly dispersed in the
base liquid at high rotation speed and can form a phase-change
material emulsion, which can store and transfer heat owing to
the sensible heat of the base liquid and the latent heat of the
phase-change particles [145–147].

The phase-change material emulsion has higher heat trans-
fer efficiency due to the large specific surface area of the phase-
change material particles, which has the advantages of high
energy storage, low temperature rise, and low pumping power
demand. It is also easy to prepare the emulsion [148]. Roy
and Avanic [149] conducted an environmental analysis on the
flow and heat transfer of n-octadecane (C18H42) in a circular
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duct. It showed that the heat exchanger capabilities of the
phase change material emulsion and the MPCM suspension
are nearly the same.

The phase-changematerials aremainly alkanes and paraffin
[150, 151]. Just like the MPCM slurry, the existing numerical
simulation and experimental studies of phase-change material
emulsions are mostly concentrated on the conventional scale,
and there are not enough on MCHSs. In addition, the exist-
ing studies pay more attention to the preparation and physical
properties of the phase-change emulsion rather than the phe-
nomenona in MCHSs.

5. Microchannel materials

The microchannel material will have a direct effect on
the manufacturing process and heat dissipation performance
[152]. For instance, a solid with high hardness will be diffi-
cult to machine, and a low thermal conductivity of the heat
sink base will be unfavorable for heat removal. According to
the packaging of the thermal management system, it can be
divided into embedded and external microchannels, whichwill
be introduced separately in this section.

5.1. External MCHS materials

In the relevant research, the materials for external microchan-
nels mainly include silicon, stainless steel, copper, aluminum
and ceramics. The heat sink is fabricated separately and
will not influence the design of the electronic layer, gener-
ally. Silicon is one of the most commonly used materials
for MCHSs. Due to its superior properties, lithography and
deep silicon etching can be used to produce high aspectra-
tio and multi-shape channels or micro-fins. The silicon-based
microchannel can be bonded to the chip by diffusion bonding,
which can realize compact packaging. Li and Peterson [153]
adopted a 3D conjugate heat transfer model to simulate and
optimize the silicon-based microchannel. The optimal design
improved the heat dissipation capacity to 20% higher than that
of Tuckerman’s design.

In 1994, Wang and Peng [154] used stainless steel instead
of silicon and experimentally investigated the heat transfer
and flow resistance characteristics of a rectangular MCHS.
The experimental data are in good agreement with simulation
results. Mudawar and Bowers [155] used stainless steel, and
the hydraulic diameter they adopted was 902 µm. The exper-
iments demonstrate that the MCHS can remove a heat flux
of more than 3000 W·cm−2 with subcooled water flow boil-
ing. Copper is another important choice for MCHSs due to
its low hardness, large thermal conductivity, rich sources and
wear resistance. Qu andMudawar [21] fabricated a rectangular
MCHS from oxygen-free copper, fitted with a polycarbonate
plastic cover plate. The pressure drop and temperature distri-
bution tested in experiment agree with the simulation results
very well, which verifies the reliability of numerical simula-
tion. Zhang et al [156] designed an aluminum heat sink with a
size of 15 mm in length and 12.2 mm in width and assembled
it on a chip using thermal interface materials (TIMs) to reduce

interfacial thermal resistance. Metal MCHSs are relatively
easy to manufacture and are usually fabricated by mechanical
cutting, laser cutting or a micro-electroforming process (with
ultraviolet-lithogrophy electroforming micro molding techno-
logy). Although the metal has high thermal conductivity and is
relatively low-cost, it is more suitable for a conventional heat
sink rather than an MCHS since it is difficult to guarantee fab-
rication accuracy and roughness at microscale. Additionally,
due to the mismatch of thermal expansion between metals and
semiconductor materials, there will be serious thermal stress
in high-power electronics.

Except for the materials mentioned above, a ceramic or
glass cover plate can also be integrated in microchannels and
set as a heat sink. Cacucciolo et al [157] even used soft materi-
als to set up a soft-matter bidirectional pump. Combining with
the micro-tubes, the cooling system can help cool the sensors
and actuators for soft robots andwearable devices. This greatly
expands the application area of microchannel cooling.

5.2. Embedded MCHS materials

Conventional packaging and system-level active heat dis-
sipation technology can achieve heat dissipation of about
0.8 kW·cm−2 at most, while the chip-level embedded pass-
ive heat dissipation technology in the near-junction area can
meet a heat dissipation demand of 1 kW·cm−2 [158]. The heat
dissipation with higher chip heat flux requires the embedded
active heat dissipation technology in the near-junction area of
the chip, which is expected to achieve a heat dissipation of
1.4 kW·cm−2 [159]. Thematerial for an embeddedmicrochan-
nel is often the same as that of the electronic chip and device
substrate. The commonly used materials include silicon, SiC,
diamond and composite materials [160].

GaN epitaxial growth on silicon wafer is a technology
developed in recent years. The silicon substrate is low-cost,
easy to process and can be integrated with conventional sil-
icon devices. However, due to the difference in crystal struc-
ture (Si is diamond structure while GaN is wurtzite struc-
ture), there will be a large lattice mismatch between GaN
and Si. Serious problems will emerge when GaN is grown
directly on silicon substrate, which cannot meet the require-
ments of device manufacturing. With the development of epi-
taxy technology, researchers have proposed a variety of meth-
ods to improve silicon-based epitaxy GaN. Methods such as
AlN low-temperature growth insertion layers, superlattices
and graphed substrates can improve the quality of GaN based
on Si substrate. A typical embedded MCHS made of silicon
is the work of Erp et al [161] published in Nature in 2020.
They performed a co-design of the electronic and thermal dis-
sipation system and fabricated both the electronic devices and
microchannels on the same silicon wafer. The experiments
demonstrate that the cooling structure can remove a heat flux
up to 1700 W·cm−2 using only 0.57 W·cm−2 of pumping
power. The performance cooling coefficient increases 50 times
compared with straight microchannels. This is a breakthrough
in MCHSs. They also presented the fabrication process of the
co-design device (figure 13(a)).
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Figure 13. Different types of chip substrate and the corresponding MCHS. (a) Silicon. Reproduced from [161], Copyright © 2020, The
Author(s), under exclusive license to Springer Nature Limited. (b) Diamond. [163] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim.

Another commercially available substrate is SiC. Since the
lattice mismatch between GaN and SiC is relatively small, this
advantage and its excellent thermal and electrical conductivity
make it an ideal GaN heterostructure epitaxial substrate, espe-
cially in high-frequency, high-pressure and high-temperature
power devices. However, the oxide film and lattice mismatch
on SiC will also introduce dislocation defects or cracks, which
affect the quality of GaN and ultimately affect the perform-
ance of the device. Additionally, the high price of SiC also pre-
vents it from being widely used in GaN heteroepitaxy. A sim-
ilar growth technology can also be applied to SiC substrates,
such as low-temperature AlN buffer layers, and graphed sub-
strates. The technology of directly designing microchannels in
SiC structure for on-chip microfluid heat dissipation has been
proposed by LockheedMartin’s team, that is, using the back of
a SiC substrate as the microchannel plate of the heat sink, and
the fluid in the heat sink directly flows through the substrate

below the chip heat source, so as to achieve the purpose of
efficient heat exchange near the chip junction area. Based on a
cylindrical needle-shapedmicrochannel heat dissipation struc-
ture, Ditri et al [162] used photolithography and physical etch-
ing technology to make a breakthrough in the manufactur-
ing process of near-junction microchannels on GaN substrates
(figure 13(b)). They also carried out a verification study of
GaN monolithic microwave integrated circuit (MMIC) by this
approach. The working fluid is a mixture of propylene glycol
and water for single-phase heat dissipation, which has the cap-
ability to meet a heat flux of 1 kW·cm−2. The thermal resist-
ance is reduced by four times under the same power.

When diamond is used as the substrate for a GaN device,
the key technologies are the diamond microchannel manufac-
turing, the seal with the silicon distribution plate and fluid con-
trol. Commonly used manufacturing processes include: (a) the
Si substrate serves as drainage and sealing, and its bonding
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process uses SiO2 vapor deposition bonding or solder direct
bonding; (b) the Si substrate is designed with a multi-layer
drainage structure to achieve an integrated microfluidic drive
on the chip. Although the development of wafer-level diamond
substrate GaN devices is slow and the etching of a diamond
microchannel is extremely difficult, the superior heat con-
ductivity of diamond and the active microfluidic heat dissipa-
tion bring great research potential and development value for
the thermal management of ultra-high power density devices.
First developed by the Raytheon research team, the techno-
logy for diamond microchannel design includes the support of
an intra-chip embedded cooling program, that is, etching the
microchannels in the diamond substrate near the junction area
at the lower end of the gate area of GaN devices, and using sil-
icon substrate for bonding sealing and microflow control. The
fluid flows into the area of the diamond substrate below the act-
ive area of the chip to directly exchange the heat, at a heat flux
of 1.25 kW·cm−2. Stanford University proposed an excellent
diamond channel heat dissipation structure [163]. The chem-
ical vapor deposition (CVD) diamond die is fabricated into a
triangular shape by infrared (IR) laser micromachining, and
then porous copper layers are electrodeposited on its surface.
The integration process is shown in figure 13(b).

The Northrop Grumman AS research team proposed in-
chip microflow heat dissipation technology based on a com-
posite substrate. The approach is to fabricate rectangular
microchannels in a conventional SiC substrate and grow a
layer of diamond on the microchannel walls to enhance the
thermal exchange between the liquid and the solid. The chal-
lenges are the design of the microchannels, the control of the
interfacial thermal resistance between SiC and diamond and
the growth of a high-quality diamond layer. Gambin et al [164]
designed a microchannel below the heat source and pumped
the working fluid by jet impingement. A silicon plate is used
for bonding and sealing as well as microflow control. This
design can reduce the difficulty of diamond layer growth in the
microchannel of the SiC substrate, and effectively realize the
manufacture of microchannels inside a composite substrate.

The embedded cooling technology is very innovative and
pioneering. The application and technical approach depend
on the substrate material, and it is expected more materials
will be developed with high thermal conductivity integrated
inside the chip. However, at present, the technique still can-
not be used commercially. There is still disagreement about
the on-chip microflow structure, microflow control and device
manufacture. In addition, the embeddedMCHSmay affect the
electronics fabrication and operation since the flow is too near
the device. However, it has great application potential in the
third-generation semiconductors, and will be a promising way
to solve the bottleneck of heat accumulation in high-power
devices.

6. Other influencing factors

The characteristic size of the microchannel is much smal-
ler than that of the conventional channel. The factors (such

as surface roughness and thermal property variations) which
are often neglected in conventional-scale structures may play
important roles inmicrochannels [165]. This sectionwill focus
on some other factors affecting the flow and heat transfer fea-
tures in microchannels.

6.1. Surface roughness

In conventional channels, when the surface relative roughness
is below 5%, it is unnecessary to consider the effect of rough-
ness on the flow resistance, while in microchannels, limited by
the small size and manufacturing techniques, the surface rel-
ative roughness generally exceeds 5% and the effect cannot be
neglected. Therefore, the roughness will play an increasingly
important role with decreasing channel scale. For example, the
height of the roughness elements can reach 40 µm and the rel-
ative roughness can be 10%–20%, when fabricated by wire-
electrode cutting. At this point, roughness needs to be taken
into account.

Many researchers have devoted effort to studying the sur-
face roughness in microchannels. The approaches they adop-
ted include: (1) Direct simulation. This considers the rough-
ness elements as macroscopic structures and simulates them
directly. This method is accessible but not accurate. Moreover,
the computation cost is really expensive. (2) The roughness-
viscosity model. This considers the additional momentum
transfer caused by roughness and explains it by means of an
effective viscosity. In this model, the viscosity near the wall
is considered as a constant which is proportional to Re, while,
at the center of the tube, it diminishes to zero. (3) The por-
ous media model [166]. This model divides the flow region
into two parts: one is the central part where the conventional
momentum equation applies. The other part is the rough layer
where it introduces a friction factor and an empirical por-
ous layer permeability. (4) Regular perturbation method [167].
This method considers the roughness as a perturbation, and the
perturbation equation is expanded in Fourier series to solve for
laminar flow in microtubes.

Koo and Kleinstreuer [168] analyzed the influence of the
roughness in microconduits on heat transfer using the porous
mediamodel. They took the relative surface roughness as a key
parameter and concluded that the impact of surface roughness
on heat transfer was less than that on the momentum transfer.
The most important factor affecting heat transfer performance
for a given relative surface roughness is the thermal conductiv-
ity ratio between the rough layer and bulk fluid. Hetsroni et al
[169] analyzed the pressure drop and the transition Re in circu-
lar, rectangular, triangular and trapezoidal microchannels with
hydraulic diameters ranging from 1.01µm to 4010µm. In their
work, the transition Re is in the range of 1800–2200 with rel-
ative roughness of 0.32%–7%. When the relative roughness
grows, the friction factors will be larger, and the transition
Re will decrease. Shen et al [170] and Steinke and Kandlikar
[171] both investigated the flow and heat transfer perform-
ance in microchannels with roughness. The results reflect that
the Nusselt number, friction factors and pressure drop are
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Figure 14. MCHS with different arrangements of inlet and outlet (a) effect of chambers on heat transfer coefficient. Reproduced from
[172]. CC BY 4.0. (b) Effect of inlet and outlet configurations and inlet header shapes on temperature uniformity. Reprinted from [173],
Copyright © 2013 Elsevier Ltd. All rights reserved.

significantly deviated from those calculated based on conven-
tional theories.

The deviation of the friction in microchannels from that at
conventional scale is due to the comprehensive effect arising
from the non-ideal experiment condition, the measurement
error and the decrease of characteristic length, etc. It remains
to further confirm whether the flow and heat transfer laws in
microchannels are in agreement with those at large scale.

6.2. Inlet and outlet design

Generally speaking, if not specifically pointed out, studies of
the flow and heat transfer in conventional channels focus on
the fully developed region. However, for the microchannel, in
order to measure the pressure drop and temperature at the inlet
and outlet, it is often necessary to set a relatively large static
pressure chamber. At this point, the flow at the joint between
the chamber and channel is not fully developed, which will
induce inlet and outlet effects. Many researchers often ignore
or use conventional empirical formula to estimate this effect.

Referring to the conventional channel theory, the length
of the inlet section is related to the pipe diameter, Re and
Pr. If the inlet effect is considered, different Re will lead to
significantly different friction coefficients. Due to the surface
effect, the development of the flow and heat transfer boundary
layer in microchannels is relatively slow, and the length of the
inlet section will be longer than conventional channels. Dahiya
et al [172] studied three different arrangements of the inlet and
outlet: rectangular (R), divergent (DC) and semicircle (RSC)
(figure 14(a)). The results show that the DC-type arrangement
has the highest heat transfer coefficient compared with the
other two types when the Reynolds number is in the range of
342–857.

Furthermore, temperature uniformity is also an import-
ant factor in measuring the performance of a microchannel
heat exchanger. In order to ensure uniform temperature, it is

necessary to guarantee the uniformity of fluid distribution in
microchannels. However, at the inlet, outlet and headers, the
distribution of the fluid is non-uniform [174–176]. Kumaran
et al [173] studied the influence of the header design and
inlet/outlet structure on the flow distribution (figure 14(b)).
The numerical results show that the triangular inlet header and
trapezoidal outlet header can provide more uniform flow dis-
tribution. The C-type flow arrangement performs well, while
the V-type flow configuration is poor. Xia et al [177] stud-
ied the effects of different inlet/outlet positions, headers and
microchannel section shapes and concluded that the flow dis-
tribution of type Z was poor. The triangular inlet header can
obtain a more uniform flow distribution. In addition to the
above research, some researchers improved the uniformity of
flow and temperature distribution by optimizing the MMCs.
Tang et al [178] adopted the inlet chamber and inlet manifold
modified with a tapered contracting structure when optimizing
a self-similarity heat sink (SSHS). The research shows that the
flow distribution and heat transfer performance are determined
by the height of the overflow channel, but not by the width and
length of it. When the rectangular inlet chamber and inlet man-
ifold channel are replaced by a conical structure, the flow and
temperature distribution inside the SSHS is more uniform.

6.3. Axial heat conduction

Considering the hydraulic diameter of the microchannel is
really small, thewidth of the channel wall is often thick enough
to guarantee structural strength in the manufacturing process.
However, when the heat flux is really high, the axial thermal
conduction along the channel wall cannot be neglected. In
addition, there will be errors between the real and measured
data due to the fact that the test positions are not so close to
the microchannel wall.

In order to fully consider the influence of the axial thermal
conduction effect, Maranzana et al [179] numerically studied
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theMCHS. The results show that axial thermal conduction can
be ignored only when the ratio of axial thermal conduction to
radial thermal conduction is less than 0.01, and axial thermal
conduction is more obvious when Re is small. The work of
Tiselj et al [180] indicates that when axial thermal conduction
is considered, there is a singular point for the Nusselt num-
ber along the channel (where the average temperature of the
fluid and the solid is the same), and this special point gradu-
ally approaches the outlet as the Re number increases.

To sum up, in the theoretical analysis, numerical calcula-
tion and experimental testing of MCHSs, the influence of sur-
face roughness is a problem that needs to be further studied.
The flow and heat transfer processes in the microchannel have
obvious three-dimensional characteristics, so it is necessary to
consider the influence of the axial thermal conduction effect,
especially when the Reynolds number is relatively small.

7. Heat transfer enhancement technology

Due to the small characteristic size of microchannels, the
Reynolds number of conventional fluids is generally in
the range of laminar flow. In addition, the boundary layer
developed along the flow direction alsoweakens the heat trans-
fer process. Consequently, proposed new designs of MCHSs
are needed to enhance the heat transfer. At present, effi-
cient thermal management technology in microchannels can
be divided into active and passive methods (figure 15). In
terms of the active method, external energy is supplied to pro-
duce an unsteady flow, while the passive method is to enlarge
the heat transfer surface [43–51], promote fluid mixing [181–
183] or improve the thermal properties of coolants by optim-
izing the geometric structures [184] or use various working
fluids [185].

7.1. Active method

7.1.1. Jet impingement cooling. In jet impingement cooling,
the rapidly flowing working fluid impacts on the heat surface
directly with a short flow distance. The boundary layer formed
in the central impinging area is very thin. Additionally, accord-
ing to the field synergy principle presented by Guo [186], the
best synergy between velocity field and temperature gradi-
ent field is attained when the flow impinges on the heat sur-
face vertically and thus enhances the convective process. The
jet impingement flow is thereby considered as a promising
research hotspot in the field of electronic cooling [187–189].

The external impact generated by jet impingement can
promote the flow mixing and disturb the boundary layer
to improve the heat transfer efficiency. Zhuang et al [190]
designed a microchannel heat exchanger with jet nozzles, and
tested the local heat transfer coefficients at a stagnation point
and in parallel flow regions experimentally. They showed that
the cooling efficiency will be enhanced by accelerating the
impingement, but the pressure drop will increase significantly.

The techniques combining any two of the jet impingement,
dimpled surface and microchannel will perform better in heat

transfer than adopting any one of the three. Therefore, many
people propose the compositemicrochannel. Huang et al [191]
carried out simulations on aMCHSwith impinging jets (MIJs)
and different dimple structures (figure 16(a)) using Ansys
Fluent. They indicate that MIJs with convex dimples have the
best thermal transfer performance, and the other three struc-
tures (i.e. MIJs without dimples, with concave dimples and
with mixed dimples) have little difference in heat exchange.

Pin-fins can also enhance the heat exchange. Wan et al
[192] integrated the jet impingement into a pin-fin roughened
plate. As shown in figure 16(b), they compared the flow
and thermal characteristics of the inline and staggered pin-
fin plates. A pin-fin roughened plate performs better than one
without pin-fins due to the enlargement of the heat transfer
area and turbulence enhancement. In addition, the inline pin-
fin roughened plate can promote the production of a large-
scale vortex in the main flow, which can help dissipate more
heat from the solid surface.

Any two or more of the techniques mentioned above can
be combined into the thermal enhancement design, and at the
same time, will increase the pumping power. Consequently,
the key objective is to improve the heat transfer efficiency and
temperature distribution uniformity as well as reduce the pres-
sure drop.Moreover, it is hard to obtain analytical solutions for
the jet impingement, and most researchers therefore investig-
ate it by experiment and simulation. Nevertheless, there are so
many influencing factors in experiments that the empirical cor-
relations proposed at different working conditions fail to reach
an agreement and cannot be universally applied. Simulations,
however, can be implemented under the ideal conditions and
supplement the experimental studies on jet impingement.

7.1.2. Pulsating flow. Pulsating flow can destroy the devel-
opment and reduce the thickness of the flow and thermal
boundary layer. By introducing time-pulsating fluid into the
microchannel, the unstable flow near the microchannel wall
can improve the overall heat transfer efficiency. Compared
with steady flow, the pulsating flow in a microchannel has
more complex characteristics. The related parameters such
as pulsation frequency, amplitude, period, and the geometric
structure of the microchannel will all have an impact on the
heat dissipation performance [195].

Nishimura et al [196] studied the influence of pulsating
flow on the flow and mass transfer of non-Newtonian fluid
in microchannels with corrugated and special periodic struc-
tures. The results show that the corrugated and specific peri-
odic channels can generate secondary flow at the channel bend,
and thus perform better in mass transfer. By oscillating the
fluid, laminar flow at this point has a stronger mass transport
capacity than turbulent flow. Nandi and Chattopadhyay [197]
carried out a series of numerical simulation studies and found
that the improvement of heat transfer performance of pulsating
inlet flow depended on the amplitude and frequency of pulsa-
tion. When Re exceeds a certain value, the fluctuating inlet
flow at all amplitudes predominates the viscous force, making
the shear layer roll up near the wall and the flow unstable. In
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Figure 15. Classification of heat transfer enhancement technology in microchannels.

addition, when Re is small, the pulsation effect is significant,
but when Re is large, the effect of the pulsating inlet on heat
transfer can be neglected.

The pulsating inlet can improve the heat transfer perform-
ance under specific conditions and shows great potential in
engineering applications. However, as an effective heat trans-
fer enhancement technology, fluid pulsation has many influ-
encing factors due to its complex mechanism, and more effort
should be devoted to the relevant research. For example, under
the interaction of multiple factors, systematic research needs
to be carried out to determine the best working conditions. In
addition, a pulsating device is essential for pulsating flow, and
its performance directly determines the characteristics of the
pulsating fluid, thus affecting the overall heat dissipation capa-
city. Research with different operating conditions and environ-
ments needs to be conducted.

7.2. Passive method

Passive enhanced heat transfer technology refers to care-
fully designed channel geometry (such as the non-straight
microchannel, and the construction of the turbulence struc-
ture, discussed specifically in section 2.1), setting the obstacles
in the channel structure (such as ribs, surface modification
and surface extension, discussed specifically in section 2.2)
and working fluid selection (such as the introduction of non-
Newtonian fluid, discussed specifically in section 3). It can
enhance the heat transfer capacity by increasing the thermal
conductivity of coolants, interrupting the boundary layer,
inducing the generation of secondary or unstable flow, accel-
erating the transition from laminar to turbulence, or increasing
the velocity gradient near the heating surface [198, 199]. The
passive method does not require additional external compon-
ents or power input, and thus is more reliable in complex sys-
tems. Some passive enhanced heat transfer methods have been
introduced in the previous sections. Here, research on the por-
ous media microchannel and MMC will be discussed.

7.2.1. Porous media microchannel. Porous media can
provide an extremely large convective heat transfer surface,
and the complex foam structures can also promote fluid mix-
ing. Turbulence will occur even at low flow rates. The related
research also verifies that porous media are effective materials
to enhance single-phase convective heat transfer [200–203].

Hsieh et al [204] studied the effects of porosity, pore dens-
ity and air flow rate on the heat transfer characteristics of a
porous foam aluminum heat sink experimentally. Their results
indicated that the Nusselt number increases with the increase
of hole density, which the researchers believed was due to
the increase of heat dissipation area. Ghahremannezhad and
Vafai [193] experimentally studied the strengthening effect of
porous substrate materials (figure 16(c)) on the heat trans-
fer performance of MCHS, and established an optimization
design method based on thermal resistance and pumping
power. The results showed that with the increase of poros-
ity, the thermal resistance increases and the pumping power
decreases, but the pumping power decreases much more sig-
nificantly than the thermal resistance increases. In addition, as
the thickness of porous substrate increases, the effect of poros-
ity becomes greater. This study showed that porous substrate
materials have great potential in improving heat dissipation
and hydraulic performance.

The existing studies indicate that the porous foam metal,
as an internal insert, can effectively destroy the boundary
layer within a certain range. The enlarged heat transfer sur-
face area also plays an important role in improving the cool-
ing efficiency. At the same time, it can also achieve a higher
heat transfer coefficient than other conventional heat sinks
under a low pressure drop [205, 206]. However, as the por-
ous foam metal has been an emerging material in recent years,
the related research on it is still in development, and more the-
oretical results are expected in the future. In addition, due to
the limitation of foam metal preparation, it is difficult to con-
nect the porous media well with the heating surface. The exist-
ing research adopts self-welding or directly inserting porous
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Figure 16. Research on heat transfer enhancement of MCHS. (a) Microchannel with impinging jet and dimple structure. Reprinted from
[191], © 2017 Elsevier Ltd. All rights reserved. (b) Microchannel with multiple impinging jet and pin-fin. Reprinted from [192], Copyright
© 2015 Elsevier Ltd. All rights reserved. (c) Microchannel with the proposed porous structure. Reprinted from [193], © 2018 Elsevier Ltd.
All rights reserved. (d) Manifold microchannel. Reprinted from [194], © 2017 Elsevier Ltd. All rights reserved.
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media, which will inevitably increase the contact thermal
resistance. The MCHS with porous foam metal will develop
greatly if these problems can be solved,

7.2.2. Manifold microchannel (MMC). Although porous
media can have a relatively high heat transfer coefficient,
they are not suitable for cooling large-size electronic chips
or devices due to the huge flow resistance. Consequently, in
addition to the heat transfer performance, reducing the pres-
sure drop should be taken into account in the optimization
of microchannel structures. The manifold, acting as a coolant
distributor, can shorten the flow distance in the microchannel
and reduce the pressure drop substantially. Furthermore, when
the coolant flows through the manifolds, it will impinge on
the substrate surface directly and heighten the heat exchanger
at the impingement point. Considering this, many researchers
have proposed the concept of the MMC [207–210].

Arie et al [211] implemented the manifold MCHS into an
air–water heat transfer system and found that compared with
wavy fins, the manifold MCHS manufactured by 3D print-
ing could dissipate up to 60% higher heat flux. As shown in
figure 16(d), Drummond et al [194] fabricated an embedded
manifold MCHS and conducted two-phase experiments with
HFE-7100. Under a pumping pressure of 162 kPa, the mani-
fold MCHS can dissipate a heat flux as high as 910 W·cm−2.
Jung et al [212] also fabricated an embedded manifold MCHS
and demonstrated that, at a flow rate of 0.104 l·min−1 and a
heat flux of 251.74 W·cm−2, the thermal resistance of single-
phase water cooling could drop to 0.58 ◦C·W−1, with a pres-
sure drop of only 2.36 kPa. This manifold MCHS exhibited
excellent heat transfer capability. However, the microchannel
and the multi-manifold plate are usually designed and man-
ufactured separately and then combined through a bonding
process. This process will greatly increase the complexity and
cost of chip manufacturing. Fortunately, single-chip integrated
MMC technology is a great breakthrough in solving this prob-
lem and thus generates the embedded MMC heat sink. Using
this technology, embedded 3Dmanifold channels can be integ-
rated and co-manufactured with the chip in a single wafer.
The manufacturing processes are as follows: first, a narrow slit
is etched into a silicon substrate coated with a layer of GaN
semiconductor, where the depth of the slit corresponds to the
depth of the channel that will be created. Second, isotropic
gas etching is used to widen the gaps in the silicon to the final
width of the microchannel. Finally, the openings at the top of
the microchannel are sealed with copper, and then electronic
devices can be manufactured in the GaN layer. Unlike previ-
ous methods for manufacturing MMCs with an extra bond-
ing process, this method can produce microchannels and man-
ifolds together.

Active heat transfer enhancement methods can signific-
antly improve the heat transfer efficiency but require external
control modules, which makes them complex and high-
cost. Passive enhancement methods, despite their reliability
and convenient integration in electronic devices, will also
have some limitations in practice, for example, the complex
micro-structures will increase the flow resistance and are hard

to manufacture. In short, there are both advantages and dis-
advantages of active and passive enhancement technology.
Engineers should select appropriate approaches to enhance
heat exchange based on the operating conditions.

8. Conclusions and outlook

Since the concept of the MCHS was first proposed by
Tuckerman and Pease [18], many researchers have conducted a
large amount of theoretical, numerical and experimental stud-
ies on it and demonstrated the MCHS to be an effective way
to solve the thermal management problem of high-power elec-
tronic chips and devices. This paper introduces the application
of MCHSs with different structures, cooling fluids and mater-
ials, and also emphasizes the research focused on microchan-
nel heat dissipation, such as optimized design, phase-change
heat transfer and heat transfer enhancement. It also highlights
the key problems and difficulties of microchannel heat dissip-
ation. All these can provide a theoretical reference and tech-
nical guidance for further research and application. The devel-
opment outlook of MCHS is shown in figure 17 and will be
discussed in detail below.

With the rapid development of the high-power and high-
heat-flux electronics industry, the heating power of electronic
chips and devices is bound to increase continuously, and its
thermal management technology will face greater challenges
[213, 214]. The development of existing heat dissipation tech-
nologies ranges from passive to active, from natural convec-
tion, forced air cooling to forced liquid cooling, and from
single-phase heat dissipation to multiphase heat dissipation.
New and efficient heat dissipation technologies and methods
urgently need to be developed, along with methods for dissip-
ating significantly increasing heat flux.

The MCHS requires a complete loop system and the sup-
porting equipment is relatively expensive and large in size.
This limits the application of MCHSs in some circumstances
to a certain extent. In recent years, with the progress of nan-
omachining technology, the nanochannel heat sink has come
into people’s attention. Compared with a microchannel, the
ratio of surface area to volume of a nanochannel is larger,
so the heat transfer area under the same volume is larger.
Additionally, the capillary force is dominant in the filling pro-
cess in a nanochannel. The nanochannel heat sink device is
relatively simple and has higher heat dissipation efficiency.
However, there is a lack of studies on the capillary filling pro-
cess in a nanochannel. Due to the numerous factors affect-
ing the filling process (including the dynamic contact angle,
bubble and electro-viscous effect), the mechanism is still
unclear, and the main influencing factors are still controver-
sial. In addition, the fitting slopes of the simulation and exper-
imental results are lower than the theoretically predicted value,
and no model so far has accurately predicted the capillary
filling process. The difficulties above should be overcome in
future research.

For external MCHSs, the thermal interface material (TIM)
between the chip and heat sink is unavoidable. Although many
researchers are exploring TIMwith high thermal conductivity,
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Figure 17. The development outlook for the MCHS.

the current TIM layer still retains high thermal resistance, so
it becomes the main heat dissipation bottleneck of external
MCHSs. For embedded MCHSs, the microfluid cooling chan-
nel is integrated into the chip without the use of a TIM layer, so
that the distance between the cooling fluid and the heat source
of the chip is greatly reduced, and its cooling efficiency is very
high. Therefore, it has become a promising method to improve
the performance of chip thermal management. However, the
cooling system of the embedded MCHS requires many addi-
tional chip manufacturing processes, such as backside litho-
graphy, etching and bonding. Another major disadvantage is
that the pressure drop increases sharply with the increase in
the length of the channel, which means that a more power-
ful pump is required. This brings more energy consumption
and costs, and creates potential mechanical stresses on the
chip. Furthermore, the high temperature gradient on the chip
may cause thermal–mechanical stress and even local warping
for thin chips. Therefore, the future development direction of
embedded MCHSs is to improve the chip manufacturing pro-
cess, to ensure the efficiency and reliability of the chip work-
ing conditions, and to increase the reliability and stability of
system operation.

As for the working fluid in MCHSs, different coolants
have different characteristics and application environments.
Water-soluble liquids are not electrically insulated and cannot
contact the chip directly, which makes the entire cooling

system complex. Although a dielectric fluid can effectively
solve the problem, its heat transfer capacity is relatively low.
Nanofluids perform well in heat transfer, for example, mag-
netic nanoparticles can be regulated by an external mag-
netic field to achieve better heat transfer. However, nano-
fluids require higher pumping power, and particle agglom-
eration, volume concentration and other instability phenom-
ena can all weaken the heat transfer. Researchers should
devote more efforts to determine the mechanism of the
phenomena and find ways to avoid them fundamentally.
Compared with aqueous coolants, liquid metals promise bet-
ter properties and less flow resistance. However, at present,
the practical temperature range of liquid metals still needs
to be further extended. In addition, the costs and compat-
ibility with common packaging materials are also critical
barriers preventing liquid metals from being widely used.
As for MCHSs with phase-change flow and heat transfer,
when the working fluid is boiling, the bubbles may cause
a ‘gas plug’ and ‘backflow’, which will lead to unstable
flow. These possible phenomena can worsen the heat trans-
fer, affect the system safety and cause other problems. With
the rapid development of new cooling medium and intelli-
gent technology, the cooling of electronics in the future should
be combined with intelligent control for different situations,
so as to achieve efficient and economical heat dissipation.
Intelligent hybrid collaborative cooling with new cooling
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medium is predicted to be a future trend of microchannel
cooling.

The MCHS in future is expected to have greater heat
dissipation capacity, less pressure loss, and better temperat-
ure uniformity. Although various structures have been pro-
posed by reserachers, all the existing types of microchannel
structures have some disadvantages. For example, continu-
ous microchannels will create large temperature differences
along the flow and the heat transfer efficiency is often relat-
ively low. Discontinuous microchannels can enhance disturb-
ance and thin the boundary layer, but will increase pressure
loss when the structural parameters are not designed prop-
erly. Elementary geometric optimization of the channel struc-
ture can no longer meet the rapidly growing heat dissipa-
tion demand. Therefore, it is necessary to design a composite
structure MCHS that can strengthen heat transfer and reduce
flow resistance at the same time by adopting the advantages
of various structures and advanced optimization algorithms.
At present, the most widely used optimization design meth-
ods include the minimum entropy production principle, the
entransy dissipation extreme principle and topology optim-
ization. In particular, topology optimization has been rapidly
developed andwell applied in recent years, and it is expected to
play an increasingly important role in the optimization design
of MCHSs. In addition, based on the current research, it is still
necessary to further study the flow and heat transfer phenom-
ena of fluids in microchannels, improve understanding of the
heat transfer enhancement mechanism and factors affecting
flow resistance, and find effective optimization approaches. It
is also necessary to propose certain criteria to evaluate the per-
formance of MCHSs comprehensively.

In conclusion, the research on MCHSs is still under devel-
opment. The mechanisms of some heat transfer enhancement
methods are still not very clear, and there is no consistent
conclusion on the optimal size and shape of the microchan-
nel. Furthermore, the manufacturing techniques to integrate
MCHSs into the electronic packaging are far from mature.
However, with the development of modern microelectronic
and MEMS technology, these problems are expected to be
overcome. The introduction of new concepts of heat trans-
fer enhancement, efficient liquid cooling technology, and
the preparation of new materials will bring opportunities
to enhance the comprehensive performance of microchannel
thermal management. These also point out the development
directions for research and application of MCHS technology
in the field of electronic chips and devices. We believe that
significant progress will be made in the near future.
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